Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 Mar 1;378(Pt 2):373–382. doi: 10.1042/BJ20031049

Cellular mechanisms of redox cell signalling: role of cysteine modification in controlling antioxidant defences in response to electrophilic lipid oxidation products.

Anna-Liisa Levonen 1, Aimee Landar 1, Anup Ramachandran 1, Erin K Ceaser 1, Dale A Dickinson 1, Giuseppe Zanoni 1, Jason D Morrow 1, Victor M Darley-Usmar 1
PMCID: PMC1223973  PMID: 14616092

Abstract

The molecular mechanisms through which oxidized lipids and their electrophilic decomposition products mediate redox cell signalling is not well understood and may involve direct modification of signal-transduction proteins or the secondary production of reactive oxygen or nitrogen species in the cell. Critical in the adaptation of cells to oxidative stress, including exposure to subtoxic concentrations of oxidized lipids, is the transcriptional regulation of antioxidant enzymes, many of which are controlled by antioxidant-responsive elements (AREs), also known as electrophile-responsive elements. The central regulator of the ARE response is the transcription factor Nrf2 (NF-E2-related factor 2), which on stimulation dissociates from its cytoplasmic inhibitor Keap1, translocates to the nucleus and transactivates ARE-dependent genes. We hypothesized that electrophilic lipids are capable of activating ARE through thiol modification of Keap1 and we have tested this concept in an intact cell system using induction of glutathione synthesis by the cyclopentenone prostaglandin, 15-deoxy-Delta12,14-prostaglandin J2. On exposure to 15-deoxy-Delta12,14-prostaglandin J2, the dissociation of Nrf2 from Keap1 occurred and this was dependent on the modification of thiols in Keap1. This mechanism appears to encompass other electrophilic lipids, since 15-A(2t)-isoprostane and the lipid aldehyde 4-hydroxynonenal were also shown to modify Keap1 and activate ARE. We propose that activation of ARE through this mechanism will have a major impact on inflammatory situations such as atherosclerosis, in which both enzymic as well as non-enzymic formation of electrophilic lipid oxidation products are increased.

Full Text

The Full Text of this article is available as a PDF (348.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bea Florian, Hudson Francesca N., Chait Alan, Kavanagh Terrance J., Rosenfeld Michael E. Induction of glutathione synthesis in macrophages by oxidized low-density lipoproteins is mediated by consensus antioxidant response elements. Circ Res. 2003 Feb 6;92(4):386–393. doi: 10.1161/01.RES.0000059561.65545.16. [DOI] [PubMed] [Google Scholar]
  2. Bell-Parikh L. Chastine, Ide Tomomi, Lawson John A., McNamara Peter, Reilly Muredach, FitzGerald Garret A. Biosynthesis of 15-deoxy-delta12,14-PGJ2 and the ligation of PPARgamma. J Clin Invest. 2003 Sep;112(6):945–955. doi: 10.1172/JCI18012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cernuda-Morollón E., Pineda-Molina E., Cañada F. J., Pérez-Sala D. 15-Deoxy-Delta 12,14-prostaglandin J2 inhibition of NF-kappaB-DNA binding through covalent modification of the p50 subunit. J Biol Chem. 2001 Jul 20;276(38):35530–35536. doi: 10.1074/jbc.M104518200. [DOI] [PubMed] [Google Scholar]
  4. Chen Y., Zackert W. E., Roberts L. J., 2nd, Morrow J. D. Evidence for the formation of a novel cyclopentenone isoprostane, 15-A2t-isoprostane (8-iso-prostaglandin A2) in vivo. Biochim Biophys Acta. 1999 Jan 4;1436(3):550–556. doi: 10.1016/s0005-2760(98)00168-4. [DOI] [PubMed] [Google Scholar]
  5. Cox Brian, Murphey Laine J., Zackert William E., Chinery Rebecca, Graves-Deal Ramona, Boutaud Olivier, Oates John A., Coffey Robert J., Morrow Jason D. Human colorectal cancer cells efficiently conjugate the cyclopentenone prostaglandin, prostaglandin J(2), to glutathione. Biochim Biophys Acta. 2002 Sep 5;1584(1):37–45. doi: 10.1016/s1388-1981(02)00267-6. [DOI] [PubMed] [Google Scholar]
  6. Dinkova-Kostova A. T., Massiah M. A., Bozak R. E., Hicks R. J., Talalay P. Potency of Michael reaction acceptors as inducers of enzymes that protect against carcinogenesis depends on their reactivity with sulfhydryl groups. Proc Natl Acad Sci U S A. 2001 Mar 13;98(6):3404–3409. doi: 10.1073/pnas.051632198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dinkova-Kostova Albena T., Holtzclaw W. David, Cole Robert N., Itoh Ken, Wakabayashi Nobunao, Katoh Yasutake, Yamamoto Masayuki, Talalay Paul. Direct evidence that sulfhydryl groups of Keap1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants. Proc Natl Acad Sci U S A. 2002 Aug 22;99(18):11908–11913. doi: 10.1073/pnas.172398899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Eguchi Y., Eguchi N., Oda H., Seiki K., Kijima Y., Matsu-ura Y., Urade Y., Hayaishi O. Expression of lipocalin-type prostaglandin D synthase (beta-trace) in human heart and its accumulation in the coronary circulation of angina patients. Proc Natl Acad Sci U S A. 1997 Dec 23;94(26):14689–14694. doi: 10.1073/pnas.94.26.14689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Erickson Aileen M., Nevarea Zulimar, Gipp Jerry J., Mulcahy R. Timothy. Identification of a variant antioxidant response element in the promoter of the human glutamate-cysteine ligase modifier subunit gene. Revision of the ARE consensus sequence. J Biol Chem. 2002 Jun 17;277(34):30730–30737. doi: 10.1074/jbc.M205225200. [DOI] [PubMed] [Google Scholar]
  10. Esterbauer H., Eckl P., Ortner A. Possible mutagens derived from lipids and lipid precursors. Mutat Res. 1990 May;238(3):223–233. doi: 10.1016/0165-1110(90)90014-3. [DOI] [PubMed] [Google Scholar]
  11. Esterbauer H., Schaur R. J., Zollner H. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med. 1991;11(1):81–128. doi: 10.1016/0891-5849(91)90192-6. [DOI] [PubMed] [Google Scholar]
  12. Fam Samuel S., Murphey Laine J., Terry Erin S., Zackert William E., Chen Yan, Gao Ling, Pandalai Saurabh, Milne Ginger L., Roberts L. Jackson, Porter Ned A. Formation of highly reactive A-ring and J-ring isoprostane-like compounds (A4/J4-neuroprostanes) in vivo from docosahexaenoic acid. J Biol Chem. 2002 Jul 19;277(39):36076–36084. doi: 10.1074/jbc.M205638200. [DOI] [PubMed] [Google Scholar]
  13. Favreau L. V., Pickett C. B. Transcriptional regulation of the rat NAD(P)H:quinone reductase gene. Identification of regulatory elements controlling basal level expression and inducible expression by planar aromatic compounds and phenolic antioxidants. J Biol Chem. 1991 Mar 5;266(7):4556–4561. [PubMed] [Google Scholar]
  14. Fukushima M. Biological activities and mechanisms of action of PGJ2 and related compounds: an update. Prostaglandins Leukot Essent Fatty Acids. 1992 Sep;47(1):1–12. doi: 10.1016/0952-3278(92)90178-l. [DOI] [PubMed] [Google Scholar]
  15. Gilroy D. W., Colville-Nash P. R., Willis D., Chivers J., Paul-Clark M. J., Willoughby D. A. Inducible cyclooxygenase may have anti-inflammatory properties. Nat Med. 1999 Jun;5(6):698–701. doi: 10.1038/9550. [DOI] [PubMed] [Google Scholar]
  16. Glass C. K., Witztum J. L. Atherosclerosis. the road ahead. Cell. 2001 Feb 23;104(4):503–516. doi: 10.1016/s0092-8674(01)00238-0. [DOI] [PubMed] [Google Scholar]
  17. Gong Pengfei, Stewart Daniel, Hu Bin, Li Ning, Cook Julia, Nel Andre, Alam Jawed. Activation of the mouse heme oxygenase-1 gene by 15-deoxy-Delta(12,14)-prostaglandin J(2) is mediated by the stress response elements and transcription factor Nrf2. Antioxid Redox Signal. 2002 Apr;4(2):249–257. doi: 10.1089/152308602753666307. [DOI] [PubMed] [Google Scholar]
  18. Huang C. S., Anderson M. E., Meister A. Amino acid sequence and function of the light subunit of rat kidney gamma-glutamylcysteine synthetase. J Biol Chem. 1993 Sep 25;268(27):20578–20583. [PubMed] [Google Scholar]
  19. Huang C. S., Chang L. S., Anderson M. E., Meister A. Catalytic and regulatory properties of the heavy subunit of rat kidney gamma-glutamylcysteine synthetase. J Biol Chem. 1993 Sep 15;268(26):19675–19680. [PubMed] [Google Scholar]
  20. Hubatsch I., Ridderström M., Mannervik B. Human glutathione transferase A4-4: an alpha class enzyme with high catalytic efficiency in the conjugation of 4-hydroxynonenal and other genotoxic products of lipid peroxidation. Biochem J. 1998 Feb 15;330(Pt 1):175–179. doi: 10.1042/bj3300175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hubatsch Ina, Mannervik Bengt, Gao Ling, Roberts L. Jackson, Chen Yan, Morrow Jason D. The cyclopentenone product of lipid peroxidation, 15-A(2t)-isoprostane (8-isoprostaglandin A(2)), is efficiently conjugated with glutathione by human and rat glutathione transferase A4-4. Chem Res Toxicol. 2002 Sep;15(9):1114–1118. doi: 10.1021/tx020027r. [DOI] [PubMed] [Google Scholar]
  22. Itoh K., Wakabayashi N., Katoh Y., Ishii T., Igarashi K., Engel J. D., Yamamoto M. Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev. 1999 Jan 1;13(1):76–86. doi: 10.1101/gad.13.1.76. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Itoh Ken, Wakabayashi Nobunao, Katoh Yasutake, Ishii Tetsuro, O'Connor Tania, Yamamoto Masayuki. Keap1 regulates both cytoplasmic-nuclear shuttling and degradation of Nrf2 in response to electrophiles. Genes Cells. 2003 Apr;8(4):379–391. doi: 10.1046/j.1365-2443.2003.00640.x. [DOI] [PubMed] [Google Scholar]
  24. Iwanaga M., Mori K., Iida T., Urata Y., Matsuo T., Yasunaga A., Shibata S., Kondo T. Nuclear factor kappa B dependent induction of gamma glutamylcysteine synthetase by ionizing radiation in T98G human glioblastoma cells. Free Radic Biol Med. 1998 May;24(7-8):1256–1268. doi: 10.1016/s0891-5849(97)00443-7. [DOI] [PubMed] [Google Scholar]
  25. Kim J. R., Yoon H. W., Kwon K. S., Lee S. R., Rhee S. G. Identification of proteins containing cysteine residues that are sensitive to oxidation by hydrogen peroxide at neutral pH. Anal Biochem. 2000 Aug 1;283(2):214–221. doi: 10.1006/abio.2000.4623. [DOI] [PubMed] [Google Scholar]
  26. Koizumi T., Negishi M., Ichikawa A. Induction of heme oxygenase by delta 12-prostaglandin J2 in porcine aortic endothelial cells. Prostaglandins. 1992 Feb;43(2):121–131. doi: 10.1016/0090-6980(92)90081-4. [DOI] [PubMed] [Google Scholar]
  27. Lee S. R., Kwon K. S., Kim S. R., Rhee S. G. Reversible inactivation of protein-tyrosine phosphatase 1B in A431 cells stimulated with epidermal growth factor. J Biol Chem. 1998 Jun 19;273(25):15366–15372. doi: 10.1074/jbc.273.25.15366. [DOI] [PubMed] [Google Scholar]
  28. Levonen A. L., Dickinson D. A., Moellering D. R., Mulcahy R. T., Forman H. J., Darley-Usmar V. M. Biphasic effects of 15-deoxy-delta(12,14)-prostaglandin J(2) on glutathione induction and apoptosis in human endothelial cells. Arterioscler Thromb Vasc Biol. 2001 Nov;21(11):1846–1851. doi: 10.1161/hq1101.098488. [DOI] [PubMed] [Google Scholar]
  29. McMahon Michael, Itoh Ken, Yamamoto Masayuki, Hayes John D. Keap1-dependent proteasomal degradation of transcription factor Nrf2 contributes to the negative regulation of antioxidant response element-driven gene expression. J Biol Chem. 2003 Apr 7;278(24):21592–21600. doi: 10.1074/jbc.M300931200. [DOI] [PubMed] [Google Scholar]
  30. Moellering Douglas R., Levonen Anna-Liisa, Go Young-Mi, Patel Rakesh P., Dickinson Dale A., Forman Henry Jay, Darley-Usmar Victor M. Induction of glutathione synthesis by oxidized low-density lipoprotein and 1-palmitoyl-2-arachidonyl phosphatidylcholine: protection against quinone-mediated oxidative stress. Biochem J. 2002 Feb 15;362(Pt 1):51–59. doi: 10.1042/0264-6021:3620051. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Moinova H. R., Mulcahy R. T. An electrophile responsive element (EpRE) regulates beta-naphthoflavone induction of the human gamma-glutamylcysteine synthetase regulatory subunit gene. Constitutive expression is mediated by an adjacent AP-1 site. J Biol Chem. 1998 Jun 12;273(24):14683–14689. doi: 10.1074/jbc.273.24.14683. [DOI] [PubMed] [Google Scholar]
  32. Mulcahy R. T., Wartman M. A., Bailey H. H., Gipp J. J. Constitutive and beta-naphthoflavone-induced expression of the human gamma-glutamylcysteine synthetase heavy subunit gene is regulated by a distal antioxidant response element/TRE sequence. J Biol Chem. 1997 Mar 14;272(11):7445–7454. doi: 10.1074/jbc.272.11.7445. [DOI] [PubMed] [Google Scholar]
  33. Nguyen Truyen, Sherratt Philip J., Huang H-C, Yang Chung S., Pickett Cecil B. Increased protein stability as a mechanism that enhances Nrf2-mediated transcriptional activation of the antioxidant response element. Degradation of Nrf2 by the 26 S proteasome. J Biol Chem. 2002 Nov 22;278(7):4536–4541. doi: 10.1074/jbc.M207293200. [DOI] [PubMed] [Google Scholar]
  34. Nguyen Truyen, Sherratt Philip J., Pickett Cecil B. Regulatory mechanisms controlling gene expression mediated by the antioxidant response element. Annu Rev Pharmacol Toxicol. 2002 Jan 10;43:233–260. doi: 10.1146/annurev.pharmtox.43.100901.140229. [DOI] [PubMed] [Google Scholar]
  35. Nioi Paul, McMahon Michael, Itoh Ken, Yamamoto Masayuki, Hayes John D. Identification of a novel Nrf2-regulated antioxidant response element (ARE) in the mouse NAD(P)H:quinone oxidoreductase 1 gene: reassessment of the ARE consensus sequence. Biochem J. 2003 Sep 1;374(Pt 2):337–348. doi: 10.1042/BJ20030754. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Oliva Jose Luis, Pérez-Sala Dolores, Castrillo Antonio, Martínez Natalia, Cañada F. Javier, Boscá Lisardo, Rojas José M. The cyclopentenone 15-deoxy-delta 12,14-prostaglandin J2 binds to and activates H-Ras. Proc Natl Acad Sci U S A. 2003 Apr 8;100(8):4772–4777. doi: 10.1073/pnas.0735842100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Parker J. Prostaglandin A2 protein interactions and inhibition of cellular proliferation. Prostaglandins. 1995 Nov-Dec;50(5-6):359–375. doi: 10.1016/0090-6980(95)00136-0. [DOI] [PubMed] [Google Scholar]
  38. Rahman I., Bel A., Mulier B., Lawson M. F., Harrison D. J., Macnee W., Smith C. A. Transcriptional regulation of gamma-glutamylcysteine synthetase-heavy subunit by oxidants in human alveolar epithelial cells. Biochem Biophys Res Commun. 1996 Dec 24;229(3):832–837. doi: 10.1006/bbrc.1996.1888. [DOI] [PubMed] [Google Scholar]
  39. Rossi A., Kapahi P., Natoli G., Takahashi T., Chen Y., Karin M., Santoro M. G. Anti-inflammatory cyclopentenone prostaglandins are direct inhibitors of IkappaB kinase. Nature. 2000 Jan 6;403(6765):103–108. doi: 10.1038/47520. [DOI] [PubMed] [Google Scholar]
  40. Rossi A., Kapahi P., Natoli G., Takahashi T., Chen Y., Karin M., Santoro M. G. Anti-inflammatory cyclopentenone prostaglandins are direct inhibitors of IkappaB kinase. Nature. 2000 Jan 6;403(6765):103–108. doi: 10.1038/47520. [DOI] [PubMed] [Google Scholar]
  41. Rushmore T. H., King R. G., Paulson K. E., Pickett C. B. Regulation of glutathione S-transferase Ya subunit gene expression: identification of a unique xenobiotic-responsive element controlling inducible expression by planar aromatic compounds. Proc Natl Acad Sci U S A. 1990 May;87(10):3826–3830. doi: 10.1073/pnas.87.10.3826. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Rushmore T. H., Morton M. R., Pickett C. B. The antioxidant responsive element. Activation by oxidative stress and identification of the DNA consensus sequence required for functional activity. J Biol Chem. 1991 Jun 25;266(18):11632–11639. [PubMed] [Google Scholar]
  43. Schönbeck U., Sukhova G. K., Graber P., Coulter S., Libby P. Augmented expression of cyclooxygenase-2 in human atherosclerotic lesions. Am J Pathol. 1999 Oct;155(4):1281–1291. doi: 10.1016/S0002-9440(10)65230-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Sekhar Konjet R., Yan Xue Xian, Freeman Michael L. Nrf2 degradation by the ubiquitin proteasome pathway is inhibited by KIAA0132, the human homolog to INrf2. Oncogene. 2002 Oct 3;21(44):6829–6834. doi: 10.1038/sj.onc.1205905. [DOI] [PubMed] [Google Scholar]
  45. Sekhar Konjeti R., Crooks Peter A., Sonar Vijayakumar N., Friedman David B., Chan Jeff Y., Meredith Michael J., Starnes Joseph H., Kelton Kathy R., Summar Samantha R., Sasi Soumya. NADPH oxidase activity is essential for Keap1/Nrf2-mediated induction of GCLC in response to 2-indol-3-yl-methylenequinuclidin-3-ols. Cancer Res. 2003 Sep 1;63(17):5636–5645. [PubMed] [Google Scholar]
  46. Shibata Takahiro, Kondo Mitsuhiro, Osawa Toshihiko, Shibata Noriyuki, Kobayashi Makio, Uchida Koji. 15-deoxy-delta 12,14-prostaglandin J2. A prostaglandin D2 metabolite generated during inflammatory processes. J Biol Chem. 2002 Jan 10;277(12):10459–10466. doi: 10.1074/jbc.M110314200. [DOI] [PubMed] [Google Scholar]
  47. Shibata Takahiro, Yamada Takaaki, Ishii Takeshi, Kumazawa Shigenori, Nakamura Hajime, Masutani Hiroshi, Yodoi Junji, Uchida Koji. Thioredoxin as a molecular target of cyclopentenone prostaglandins. J Biol Chem. 2003 Apr 22;278(28):26046–26054. doi: 10.1074/jbc.M303690200. [DOI] [PubMed] [Google Scholar]
  48. Stewart Daniel, Killeen Erin, Naquin Ryan, Alam Safdar, Alam Jawed. Degradation of transcription factor Nrf2 via the ubiquitin-proteasome pathway and stabilization by cadmium. J Biol Chem. 2002 Nov 18;278(4):2396–2402. doi: 10.1074/jbc.M209195200. [DOI] [PubMed] [Google Scholar]
  49. Straus D. S., Pascual G., Li M., Welch J. S., Ricote M., Hsiang C. H., Sengchanthalangsy L. L., Ghosh G., Glass C. K. 15-deoxy-delta 12,14-prostaglandin J2 inhibits multiple steps in the NF-kappa B signaling pathway. Proc Natl Acad Sci U S A. 2000 Apr 25;97(9):4844–4849. doi: 10.1073/pnas.97.9.4844. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Tietze F. Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Anal Biochem. 1969 Mar;27(3):502–522. doi: 10.1016/0003-2697(69)90064-5. [DOI] [PubMed] [Google Scholar]
  51. Wasserman W. W., Fahl W. E. Functional antioxidant responsive elements. Proc Natl Acad Sci U S A. 1997 May 13;94(10):5361–5366. doi: 10.1073/pnas.94.10.5361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Watson A. D., Subbanagounder G., Welsbie D. S., Faull K. F., Navab M., Jung M. E., Fogelman A. M., Berliner J. A. Structural identification of a novel pro-inflammatory epoxyisoprostane phospholipid in mildly oxidized low density lipoprotein. J Biol Chem. 1999 Aug 27;274(35):24787–24798. doi: 10.1074/jbc.274.35.24787. [DOI] [PubMed] [Google Scholar]
  53. Wild A. C., Mulcahy R. T. Regulation of gamma-glutamylcysteine synthetase subunit gene expression: insights into transcriptional control of antioxidant defenses. Free Radic Res. 2000 Apr;32(4):281–301. doi: 10.1080/10715760000300291. [DOI] [PubMed] [Google Scholar]
  54. Zanoni Giuseppe, Porta Alessio, Vidari Giovanni. First total synthesis of A(2) isoprostane. J Org Chem. 2002 Jun 14;67(12):4346–4351. doi: 10.1021/jo025652f. [DOI] [PubMed] [Google Scholar]
  55. Zipper L. M., Mulcahy R. T. Inhibition of ERK and p38 MAP kinases inhibits binding of Nrf2 and induction of GCS genes. Biochem Biophys Res Commun. 2000 Nov 19;278(2):484–492. doi: 10.1006/bbrc.2000.3830. [DOI] [PubMed] [Google Scholar]
  56. Zipper Laurie M., Mulcahy R. Timothy. The Keap1 BTB/POZ dimerization function is required to sequester Nrf2 in cytoplasm. J Biol Chem. 2002 Jul 26;277(39):36544–36552. doi: 10.1074/jbc.M206530200. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES