Abstract
All mycobacterial species, including pathogenic Mycobacterium tuberculosis, synthesize an abundant class of phosphatidylinositol mannosides (PIMs) that are essential for normal growth and viability. These glycolipids are important cell-wall and/or plasma-membrane components in their own right and can also be hyperglycosylated to form other wall components, such as lipomannan and lipoarabinomannan. We have investigated the steps involved in the biosynthesis of the major PIM species in a new M. smegmatis cell-free system. A number of apolar and polar PIM intermediates were labelled when this system was continuously labelled or pulse-chase-labelled with GDP-[3H]Man, and the glycan head groups and the acylation states of these species were determined by chemical and enzymic treatments and octyl-Sepharose chromatography respectively. These analyses showed that (1) the major apolar PIM species, acyl-PIM2, can be synthesized by at least two pathways that differ in the timing of the first acylation step, (2) early PIM intermediates containing a single mannose residue can be modified with two fatty acid residues, (3) formation of polar PIM species from acyl-PIM2 is amphomycin-sensitive, indicating that polyprenol phosphate-Man, rather than GDP-Man, is the donor for these reactions, (4) modification of acylated PIM4 with alpha1-2- or alpha1-6-linked mannose residues is probably the branch point in the biosyntheses of polar PIM and lipoarabinomannan respectively and (5) GDP strongly inhibits the synthesis of early PIM intermediates and increases the turnover of polyprenol phosphate-Man. These findings are incorporated into a revised pathway for mycobacterial PIM biosynthesis.
Full Text
The Full Text of this article is available as a PDF (272.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Apostolou I., Takahama Y., Belmant C., Kawano T., Huerre M., Marchal G., Cui J., Taniguchi M., Nakauchi H., Fournié J. J. Murine natural killer T(NKT) cells [correction of natural killer cells] contribute to the granulomatous reaction caused by mycobacterial cell walls. Proc Natl Acad Sci U S A. 1999 Apr 27;96(9):5141–5146. doi: 10.1073/pnas.96.9.5141. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Besra G. S., Morehouse C. B., Rittner C. M., Waechter C. J., Brennan P. J. Biosynthesis of mycobacterial lipoarabinomannan. J Biol Chem. 1997 Jul 18;272(29):18460–18466. doi: 10.1074/jbc.272.29.18460. [DOI] [PubMed] [Google Scholar]
- Besra G. S., Sievert T., Lee R. E., Slayden R. A., Brennan P. J., Takayama K. Identification of the apparent carrier in mycolic acid synthesis. Proc Natl Acad Sci U S A. 1994 Dec 20;91(26):12735–12739. doi: 10.1073/pnas.91.26.12735. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brennan P. J., Nikaido H. The envelope of mycobacteria. Annu Rev Biochem. 1995;64:29–63. doi: 10.1146/annurev.bi.64.070195.000333. [DOI] [PubMed] [Google Scholar]
- Brennan P., Ballou C. E. Biosynthesis of mannophosphoinositides by Mycobacterium phlei. Enzymatic acylation of the dimannophosphoinositides. J Biol Chem. 1968 Jun 10;243(11):2975–2984. [PubMed] [Google Scholar]
- Brennan P., Ballou C. E. Biosynthesis of mannophosphoinositides by Mycobacterium phlei. The family of dimannophosphoinositides. J Biol Chem. 1967 Jul 10;242(13):3046–3056. [PubMed] [Google Scholar]
- Burda P., Aebi M. The dolichol pathway of N-linked glycosylation. Biochim Biophys Acta. 1999 Jan 6;1426(2):239–257. doi: 10.1016/s0304-4165(98)00127-5. [DOI] [PubMed] [Google Scholar]
- Chatterjee D., Hunter S. W., McNeil M., Brennan P. J. Lipoarabinomannan. Multiglycosylated form of the mycobacterial mannosylphosphatidylinositols. J Biol Chem. 1992 Mar 25;267(9):6228–6233. [PubMed] [Google Scholar]
- Chatterjee D., Khoo K. H. Mycobacterial lipoarabinomannan: an extraordinary lipoheteroglycan with profound physiological effects. Glycobiology. 1998 Feb;8(2):113–120. doi: 10.1093/glycob/8.2.113. [DOI] [PubMed] [Google Scholar]
- Daffé M., Draper P. The envelope layers of mycobacteria with reference to their pathogenicity. Adv Microb Physiol. 1998;39:131–203. doi: 10.1016/s0065-2911(08)60016-8. [DOI] [PubMed] [Google Scholar]
- Dmitriev B. A., Ehlers S., Rietschel E. T., Brennan P. J. Molecular mechanics of the mycobacterial cell wall: from horizontal layers to vertical scaffolds. Int J Med Microbiol. 2000 Jul;290(3):251–258. doi: 10.1016/S1438-4221(00)80122-8. [DOI] [PubMed] [Google Scholar]
- Ernst W. A., Maher J., Cho S., Niazi K. R., Chatterjee D., Moody D. B., Besra G. S., Watanabe Y., Jensen P. E., Porcelli S. A. Molecular interaction of CD1b with lipoglycan antigens. Immunity. 1998 Mar;8(3):331–340. doi: 10.1016/s1074-7613(00)80538-5. [DOI] [PubMed] [Google Scholar]
- Forsee W. T., Elbein A. D. Biosynthesis of mannosyl- and glucosyl-phosphoryl-polyprenols in cotton fibers. J Biol Chem. 1973 Apr 25;248(8):2858–2867. [PubMed] [Google Scholar]
- Fratti Rutilio A., Chua Jennifer, Vergne Isabelle, Deretic Vojo. Mycobacterium tuberculosis glycosylated phosphatidylinositol causes phagosome maturation arrest. Proc Natl Acad Sci U S A. 2003 Apr 17;100(9):5437–5442. doi: 10.1073/pnas.0737613100. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gilleron Martine, Quesniaux Valérie F. J., Puzo Germain. Acylation state of the phosphatidylinositol hexamannosides from Mycobacterium bovis bacillus Calmette Guerin and mycobacterium tuberculosis H37Rv and its implication in Toll-like receptor response. J Biol Chem. 2003 May 29;278(32):29880–29889. doi: 10.1074/jbc.M303446200. [DOI] [PubMed] [Google Scholar]
- Gurcha Sudagar S., Baulard Alain R., Kremer Laurent, Locht Camille, Moody D. Branch, Muhlecker Walter, Costello Catherine E., Crick Dean C., Brennan Patrick J., Besra Gurdyal S. Ppm1, a novel polyprenol monophosphomannose synthase from Mycobacterium tuberculosis. Biochem J. 2002 Jul 15;365(Pt 2):441–450. doi: 10.1042/BJ20020107. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jackson M., Crick D. C., Brennan P. J. Phosphatidylinositol is an essential phospholipid of mycobacteria. J Biol Chem. 2000 Sep 29;275(39):30092–30099. doi: 10.1074/jbc.M004658200. [DOI] [PubMed] [Google Scholar]
- Khoo K. H., Dell A., Morris H. R., Brennan P. J., Chatterjee D. Structural definition of acylated phosphatidylinositol mannosides from Mycobacterium tuberculosis: definition of a common anchor for lipomannan and lipoarabinomannan. Glycobiology. 1995 Feb;5(1):117–127. doi: 10.1093/glycob/5.1.117. [DOI] [PubMed] [Google Scholar]
- Korduláková Jana, Gilleron Martine, Mikusova Katarína, Puzo Germain, Brennan Patrick J., Gicquel Brigitte, Jackson Mary. Definition of the first mannosylation step in phosphatidylinositol mannoside synthesis. PimA is essential for growth of mycobacteria. J Biol Chem. 2002 Jun 14;277(35):31335–31344. doi: 10.1074/jbc.M204060200. [DOI] [PubMed] [Google Scholar]
- Korduláková Jana, Gilleron Martine, Puzo Germain, Brennan Patrick J., Gicquel Brigitte, Mikusová Katarina, Jackson Mary. Identification of the required acyltransferase step in the biosynthesis of the phosphatidylinositol mannosides of mycobacterium species. J Biol Chem. 2003 Jul 8;278(38):36285–36295. doi: 10.1074/jbc.M303639200. [DOI] [PubMed] [Google Scholar]
- Kremer Laurent S., Besra Gurdyal S. Current status and future development of antitubercular chemotherapy. Expert Opin Investig Drugs. 2002 Aug;11(8):1033–1049. doi: 10.1517/13543784.11.8.1033. [DOI] [PubMed] [Google Scholar]
- Kremer Laurent, Gurcha Sudagar S., Bifani Pablo, Hitchen Paul G., Baulard Alain, Morris Howard R., Dell Anne, Brennan Patrick J., Besra Gurdyal S. Characterization of a putative alpha-mannosyltransferase involved in phosphatidylinositol trimannoside biosynthesis in Mycobacterium tuberculosis. Biochem J. 2002 May 1;363(Pt 3):437–447. doi: 10.1042/0264-6021:3630437. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LEE Y. C., BALLOU C. E. STRUCTURAL STUDIES ON THE MYO-INOSITOL MANNODIDES FROM THE GLYCOLIPIDS OF MYCOBACTERIUM TUBERCULOSIS AND MYCOBACTERIUM PHLEI. J Biol Chem. 1964 May;239:1316–1327. [PubMed] [Google Scholar]
- McConville M. J., Collidge T. A., Ferguson M. A., Schneider P. The glycoinositol phospholipids of Leishmania mexicana promastigotes. Evidence for the presence of three distinct pathways of glycolipid biosynthesis. J Biol Chem. 1993 Jul 25;268(21):15595–15604. [PubMed] [Google Scholar]
- McConville M. J., Thomas-Oates J. E., Ferguson M. A., Homans S. W. Structure of the lipophosphoglycan from Leishmania major. J Biol Chem. 1990 Nov 15;265(32):19611–19623. [PubMed] [Google Scholar]
- Nigou Jérôme, Gilleron Martine, Rojas Mauricio, García Luis F., Thurnher Martin, Puzo Germain. Mycobacterial lipoarabinomannans: modulators of dendritic cell function and the apoptotic response. Microbes Infect. 2002 Jul;4(9):945–953. doi: 10.1016/s1286-4579(02)01621-0. [DOI] [PubMed] [Google Scholar]
- Patterson John H., Waller Ross F., Jeevarajah Dharshini, Billman-Jacobe Helen, McConville Malcolm J. Mannose metabolism is required for mycobacterial growth. Biochem J. 2003 May 15;372(Pt 1):77–86. doi: 10.1042/BJ20021700. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Raetz Christian R. H., Whitfield Chris. Lipopolysaccharide endotoxins. Annu Rev Biochem. 2001 Nov 9;71:635–700. doi: 10.1146/annurev.biochem.71.110601.135414. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ralton J. E., McConville M. J. Delineation of three pathways of glycosylphosphatidylinositol biosynthesis in Leishmania mexicana. Precursors from different pathways are assembled on distinct pools of phosphatidylinositol and undergo fatty acid remodeling. J Biol Chem. 1998 Feb 13;273(7):4245–4257. doi: 10.1074/jbc.273.7.4245. [DOI] [PubMed] [Google Scholar]
- Ralton Julie E., Naderer Thomas, Piraino Helena L., Bashtannyk Tanya A., Callaghan Judy M., McConville Malcolm J. Evidence that intracellular beta1-2 mannan is a virulence factor in Leishmania parasites. J Biol Chem. 2003 Aug 5;278(42):40757–40763. doi: 10.1074/jbc.M307660200. [DOI] [PubMed] [Google Scholar]
- Raviglione Mario C. The TB epidemic from 1992 to 2002. Tuberculosis (Edinb) 2003;83(1-3):4–14. doi: 10.1016/s1472-9792(02)00071-9. [DOI] [PubMed] [Google Scholar]
- Russell David G., Mwandumba Henry C., Rhoades Elizabeth E. Mycobacterium and the coat of many lipids. J Cell Biol. 2002 Jul 29;158(3):421–426. doi: 10.1083/jcb.200205034. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schaeffer M. L., Khoo K. H., Besra G. S., Chatterjee D., Brennan P. J., Belisle J. T., Inamine J. M. The pimB gene of Mycobacterium tuberculosis encodes a mannosyltransferase involved in lipoarabinomannan biosynthesis. J Biol Chem. 1999 Oct 29;274(44):31625–31631. doi: 10.1074/jbc.274.44.31625. [DOI] [PubMed] [Google Scholar]
- Schultz J., Elbein A. D. Biosynthesis of mannosyl--and glucosyl-phosphoryl polyprenols in Mycobacterium smegmatis. Evidence for oligosaccharide-phosphoryl-polyprenols. Arch Biochem Biophys. 1974 Jan;160(1):311–322. doi: 10.1016/s0003-9861(74)80039-1. [DOI] [PubMed] [Google Scholar]
- Severn W. B., Furneaux R. H., Falshaw R., Atkinson P. H. Chemical and spectroscopic characterisation of the phosphatidylinositol manno-oligosaccharides from Mycobacterium bovis AN5 and WAg201 and Mycobacterium smegmatis mc2 155. Carbohydr Res. 1998 Jun;308(3-4):397–408. doi: 10.1016/s0008-6215(98)00108-6. [DOI] [PubMed] [Google Scholar]
- Snapper S. B., Melton R. E., Mustafa S., Kieser T., Jacobs W. R., Jr Isolation and characterization of efficient plasmid transformation mutants of Mycobacterium smegmatis. Mol Microbiol. 1990 Nov;4(11):1911–1919. doi: 10.1111/j.1365-2958.1990.tb02040.x. [DOI] [PubMed] [Google Scholar]