Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 Mar 1;378(Pt 2):657–663. doi: 10.1042/BJ20031548

Expression and characterization of cathepsin P.

Robert W Mason 1, Carolyn A Bergman 1, Guizhen Lu 1, Jennifer Frenck Holbrook 1, Katia Sol-Church 1
PMCID: PMC1223977  PMID: 14629193

Abstract

The mouse genome contains a family of clan C1A proteases that appear to be restricted to rodents within Eutherian (placental) mammals. mRNA analysis has shown that these genes are expressed exclusively in placenta. Sequence analysis predicts that the expressed proteins will be functional and consequently it was proposed that this family of proteases may have evolved to perform subspecialized functions of the closely related protease, cathepsin L, that is expressed in placental tissues of all mammalian species. In the present study, it was shown that cathepsin P can be expressed in Pichia pastoris as an inactive zymogen that can be activated with proteinase K, chymotrypsin or pancreatic elastase at neutral pH. Unlike other mammalian cathepsins, cathepsin P could also be autoactivated at neutral pH, but not at acidic pH. The activated enzyme was capable of hydrolysing peptidyl substrates and the protein substrates azocasein and transferrin, with optimal activity at pH 6.5-7.5. Little activity could be detected at pH 5.0 and below. Salts such as Na2SO4 and hyaluronate stimulated the activity of the protease against peptidyl substrates. The properties of cathepsin P appear to be quite distinct from those of cathepsin L, indicating that the duplication that gave rise to cathepsin P has probably not yielded an enzyme that provides a subfunction of cathepsin L in rodents. It seems probable that cathepsin P has evolved to perform a function that is performed by an evolutionarily unrelated protease in other mammalian species.

Full Text

The Full Text of this article is available as a PDF (207.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Afonso S., Romagnano L., Babiarz B. The expression and function of cystatin C and cathepsin B and cathepsin L during mouse embryo implantation and placentation. Development. 1997 Sep;124(17):3415–3425. doi: 10.1242/dev.124.17.3415. [DOI] [PubMed] [Google Scholar]
  2. Bania Jacek, Gatti Evelina, Lelouard Hugues, David Alexandre, Cappello Fanny, Weber Ekkehard, Camosseto Voahirana, Pierre Philippe. Human cathepsin S, but not cathepsin L, degrades efficiently MHC class II-associated invariant chain in nonprofessional APCs. Proc Natl Acad Sci U S A. 2003 May 14;100(11):6664–6669. doi: 10.1073/pnas.1131604100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bischof P., Meisser A., Campana A. Paracrine and autocrine regulators of trophoblast invasion--a review. Placenta. 2000 Mar-Apr;21 (Suppl A):S55–S60. doi: 10.1053/plac.2000.0521. [DOI] [PubMed] [Google Scholar]
  4. Bischof P., Truong K., Campana A. Regulation of trophoblastic gelatinases by proto-oncogenes. Placenta. 2003 Feb-Mar;24(2-3):155–163. doi: 10.1053/plac.2002.0890. [DOI] [PubMed] [Google Scholar]
  5. Brömme D., Okamoto K., Wang B. B., Biroc S. Human cathepsin O2, a matrix protein-degrading cysteine protease expressed in osteoclasts. Functional expression of human cathepsin O2 in Spodoptera frugiperda and characterization of the enzyme. J Biol Chem. 1996 Jan 26;271(4):2126–2132. doi: 10.1074/jbc.271.4.2126. [DOI] [PubMed] [Google Scholar]
  6. Chang C., Werb Z. The many faces of metalloproteases: cell growth, invasion, angiogenesis and metastasis. Trends Cell Biol. 2001 Nov;11(11):S37–S43. doi: 10.1016/s0962-8924(01)02122-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Conliffe P. R., Ogilvie S., Simmen R. C., Michel F. J., Saunders P., Shiverick K. T. Cloning and expression of a rat placental cDNA encoding a novel cathepsin L-related protein. Mol Reprod Dev. 1995 Feb;40(2):146–156. doi: 10.1002/mrd.1080400203. [DOI] [PubMed] [Google Scholar]
  8. Deussing Jan, Kouadio Martin, Rehman Salima, Werber Ingrid, Schwinde Anne, Peters Christoph. Identification and characterization of a dense cluster of placenta-specific cysteine peptidase genes and related genes on mouse chromosome 13. Genomics. 2002 Feb;79(2):225–240. doi: 10.1006/geno.2002.6696. [DOI] [PubMed] [Google Scholar]
  9. Felbor U., Dreier L., Bryant R. A., Ploegh H. L., Olsen B. R., Mothes W. Secreted cathepsin L generates endostatin from collagen XVIII. EMBO J. 2000 Mar 15;19(6):1187–1194. doi: 10.1093/emboj/19.6.1187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Green J. A., Xie S., Szafranska B., Gan X., Newman A. G., McDowell K., Roberts R. M. Identification of a new aspartic proteinase expressed by the outer chorionic cell layer of the equine placenta. Biol Reprod. 1999 May;60(5):1069–1077. doi: 10.1095/biolreprod60.5.1069. [DOI] [PubMed] [Google Scholar]
  11. Jaffe R. C., Donnelly K. M., Mavrogianis P. A., Verhage H. G. Molecular cloning and characterization of a progesterone-dependent cat endometrial secretory protein complementary deoxyribonucleic acid. Mol Endocrinol. 1989 Nov;3(11):1807–1814. doi: 10.1210/mend-3-11-1807. [DOI] [PubMed] [Google Scholar]
  12. Kirschke H., Wiederanders B., Brömme D., Rinne A. Cathepsin S from bovine spleen. Purification, distribution, intracellular localization and action on proteins. Biochem J. 1989 Dec 1;264(2):467–473. doi: 10.1042/bj2640467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Knight C. G., Willenbrock F., Murphy G. A novel coumarin-labelled peptide for sensitive continuous assays of the matrix metalloproteinases. FEBS Lett. 1992 Jan 27;296(3):263–266. doi: 10.1016/0014-5793(92)80300-6. [DOI] [PubMed] [Google Scholar]
  14. Mason R. W., Massey S. D. Surface activation of pro-cathepsin L. Biochem Biophys Res Commun. 1992 Dec 30;189(3):1659–1666. doi: 10.1016/0006-291x(92)90268-p. [DOI] [PubMed] [Google Scholar]
  15. O'Sullivan C. M., Liu S. Y., Rancourt S. L., Rancourt D. E. Regulation of the strypsin-related proteinase ISP2 by progesterone in endometrial gland epithelium during implantation in mice. Reproduction. 2001 Aug;122(2):235–244. doi: 10.1530/rep.0.1220235. [DOI] [PubMed] [Google Scholar]
  16. Quraishi O., Storer A. C. Identification of internal autoproteolytic cleavage sites within the prosegments of recombinant procathepsin B and procathepsin S. Contribution of a plausible unimolecular autoproteolytic event for the processing of zymogens belonging to the papain family. J Biol Chem. 2000 Dec 13;276(11):8118–8124. doi: 10.1074/jbc.M005851200. [DOI] [PubMed] [Google Scholar]
  17. Reponen P., Leivo I., Sahlberg C., Apte S. S., Olsen B. R., Thesleff I., Tryggvason K. 92-kDa type IV collagenase and TIMP-3, but not 72-kDa type IV collagenase or TIMP-1 or TIMP-2, are highly expressed during mouse embryo implantation. Dev Dyn. 1995 Apr;202(4):388–396. doi: 10.1002/aja.1002020408. [DOI] [PubMed] [Google Scholar]
  18. Rozman J., Stojan J., Kuhelj R., Turk V., Turk B. Autocatalytic processing of recombinant human procathepsin B is a bimolecular process. FEBS Lett. 1999 Oct 15;459(3):358–362. doi: 10.1016/s0014-5793(99)01302-2. [DOI] [PubMed] [Google Scholar]
  19. Réhault S., Brillard-Bourdet M., Juliano M. A., Juliano L., Gauthier F., Moreau T. New, sensitive fluorogenic substrates for human cathepsin G based on the sequence of serpin-reactive site loops. J Biol Chem. 1999 May 14;274(20):13810–13817. doi: 10.1074/jbc.274.20.13810. [DOI] [PubMed] [Google Scholar]
  20. Salamonsen L. A. Role of proteases in implantation. Rev Reprod. 1999 Jan;4(1):11–22. doi: 10.1530/ror.0.0040011. [DOI] [PubMed] [Google Scholar]
  21. Sol-Church K., Frenck J., Troeber D., Mason R. W. Cathepsin P, a novel protease in mouse placenta. Biochem J. 1999 Oct 15;343(Pt 2):307–309. [PMC free article] [PubMed] [Google Scholar]
  22. Sol-Church Katia, Picerno Gina N., Stabley Deborah L., Frenck Jennifer, Xing Sixun, Bertenshaw Greg P., Mason Robert W. Evolution of placentally expressed cathepsins. Biochem Biophys Res Commun. 2002 Apr 26;293(1):23–29. doi: 10.1016/S0006-291X(02)00167-5. [DOI] [PubMed] [Google Scholar]
  23. Whiteside E. J., Jackson M. M., Herington A. C., Edwards D. R., Harvey M. B. Matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-3 are key regulators of extracellular matrix degradation by mouse embryos. Biol Reprod. 2001 May;64(5):1331–1337. doi: 10.1095/biolreprod64.5.1331. [DOI] [PubMed] [Google Scholar]
  24. Xie S., Green J., Bixby J. B., Szafranska B., DeMartini J. C., Hecht S., Roberts R. M. The diversity and evolutionary relationships of the pregnancy-associated glycoproteins, an aspartic proteinase subfamily consisting of many trophoblast-expressed genes. Proc Natl Acad Sci U S A. 1997 Nov 25;94(24):12809–12816. doi: 10.1073/pnas.94.24.12809. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES