Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 Mar 1;378(Pt 2):529–538. doi: 10.1042/BJ20031487

Identification and biochemical characterization of vivapains, cysteine proteases of the malaria parasite Plasmodium vivax.

Byoung-Kuk Na 1, Bhaskar R Shenai 1, Puran S Sijwali 1, Youngchool Choe 1, Kailash C Pandey 1, Ajay Singh 1, Charles S Craik 1, Philip J Rosenthal 1
PMCID: PMC1223978  PMID: 14629194

Abstract

Cysteine proteases play important roles in the life cycles of malaria parasites. Cysteine protease inhibitors block haemoglobin hydrolysis and development in Plasmodium falciparum, suggesting that the cysteine proteases of this major human pathogen, termed falcipains, are appropriate therapeutic targets. To expand our understanding of plasmodial proteases to Plasmodium vivax, the other prevalent human malaria parasite, we identified and cloned genes encoding the P. vivax cysteine proteases, vivapain-2 and vivapain-3, and functionally expressed the proteases in Escherichia coli. The vivapain-2 and vivapain-3 genes predicted papain-family cysteine proteases, which shared a number of unusual features with falcipain-2 and falcipain-3, including large prodomains and short N-terminal extensions on the catalytic domain. Recombinant vivapain-2 and vivapain-3 shared properties with the falcipains, including acidic pH optima, requirements for reducing conditions for activity and hydrolysis of substrates with positively charged residues at P1 and Leu at P2. Both enzymes hydrolysed native haemoglobin at acidic pH and the erythrocyte cytoskeletal protein 4.1 at neutral pH, suggesting similar biological roles to the falcipains. Considering inhibitor profiles, the vivapains were inhibited by fluoromethylketone and vinyl sulphone inhibitors that also inhibited falcipains and have demonstrated potent antimalarial activity.

Full Text

The Full Text of this article is available as a PDF (425.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Banerjee Ritu, Liu Jun, Beatty Wandy, Pelosof Lorraine, Klemba Michael, Goldberg Daniel E. Four plasmepsins are active in the Plasmodium falciparum food vacuole, including a protease with an active-site histidine. Proc Natl Acad Sci U S A. 2002 Jan 8;99(2):990–995. doi: 10.1073/pnas.022630099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Banyal H. S., Misra G. C., Gupta C. M., Dutta G. P. Involvement of malarial proteases in the interaction between the parasite and host erythrocyte in Plasmodium knowlesi infections. J Parasitol. 1981 Oct;67(5):623–626. [PubMed] [Google Scholar]
  3. Bennett V., Branton D. Selective association of spectrin with the cytoplasmic surface of human erythrocyte plasma membranes. Quantitative determination with purified (32P)spectrin. J Biol Chem. 1977 Apr 25;252(8):2753–2763. [PubMed] [Google Scholar]
  4. Breman J. G. The ears of the hippopotamus: manifestations, determinants, and estimates of the malaria burden. Am J Trop Med Hyg. 2001 Jan-Feb;64(1-2):1–11. doi: 10.4269/ajtmh.2001.64.1. [DOI] [PubMed] [Google Scholar]
  5. Caffrey C. R., Hansell E., Lucas K. D., Brinen L. S., Alvarez Hernandez A., Cheng J., Gwaltney S. L., 2nd, Roush W. R., Stierhof Y. D., Bogyo M. Active site mapping, biochemical properties and subcellular localization of rhodesain, the major cysteine protease of Trypanosoma brucei rhodesiense. Mol Biochem Parasitol. 2001 Nov;118(1):61–73. doi: 10.1016/s0166-6851(01)00368-1. [DOI] [PubMed] [Google Scholar]
  6. Dua M., Raphael P., Sijwali P. S., Rosenthal P. J., Hanspal M. Recombinant falcipain-2 cleaves erythrocyte membrane ankyrin and protein 4.1. Mol Biochem Parasitol. 2001 Aug;116(1):95–99. doi: 10.1016/s0166-6851(01)00306-1. [DOI] [PubMed] [Google Scholar]
  7. Eggleson K. K., Duffin K. L., Goldberg D. E. Identification and characterization of falcilysin, a metallopeptidase involved in hemoglobin catabolism within the malaria parasite Plasmodium falciparum. J Biol Chem. 1999 Nov 5;274(45):32411–32417. doi: 10.1074/jbc.274.45.32411. [DOI] [PubMed] [Google Scholar]
  8. Francis S. E., Gluzman I. Y., Oksman A., Knickerbocker A., Mueller R., Bryant M. L., Sherman D. R., Russell D. G., Goldberg D. E. Molecular characterization and inhibition of a Plasmodium falciparum aspartic hemoglobinase. EMBO J. 1994 Jan 15;13(2):306–317. doi: 10.1002/j.1460-2075.1994.tb06263.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Greenbaum Doron C., Baruch Amos, Grainger Munira, Bozdech Zbynek, Medzihradszky Katlin F., Engel Juan, DeRisi Joseph, Holder Anthony A., Bogyo Matthew. A role for the protease falcipain 1 in host cell invasion by the human malaria parasite. Science. 2002 Dec 6;298(5600):2002–2006. doi: 10.1126/science.1077426. [DOI] [PubMed] [Google Scholar]
  10. Hadley T., Aikawa M., Miller L. H. Plasmodium knowlesi: studies on invasion of rhesus erythrocytes by merozoites in the presence of protease inhibitors. Exp Parasitol. 1983 Jun;55(3):306–311. doi: 10.1016/0014-4894(83)90027-9. [DOI] [PubMed] [Google Scholar]
  11. Hanspal Manjit, Dua Meenakshi, Takakuwa Yuichi, Chishti Athar H., Mizuno Akiko. Plasmodium falciparum cysteine protease falcipain-2 cleaves erythrocyte membrane skeletal proteins at late stages of parasite development. Blood. 2002 Aug 1;100(3):1048–1054. doi: 10.1182/blood-2002-01-0101. [DOI] [PubMed] [Google Scholar]
  12. Harris J. L., Backes B. J., Leonetti F., Mahrus S., Ellman J. A., Craik C. S. Rapid and general profiling of protease specificity by using combinatorial fluorogenic substrate libraries. Proc Natl Acad Sci U S A. 2000 Jul 5;97(14):7754–7759. doi: 10.1073/pnas.140132697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hill J., Tyas L., Phylip L. H., Kay J., Dunn B. M., Berry C. High level expression and characterisation of Plasmepsin II, an aspartic proteinase from Plasmodium falciparum. FEBS Lett. 1994 Sep 26;352(2):155–158. doi: 10.1016/0014-5793(94)00940-6. [DOI] [PubMed] [Google Scholar]
  14. Klemba Michael, Goldberg Daniel E. Biological roles of proteases in parasitic protozoa. Annu Rev Biochem. 2001 Nov 9;71:275–305. doi: 10.1146/annurev.biochem.71.090501.145453. [DOI] [PubMed] [Google Scholar]
  15. Lyon J. A., Haynes J. D. Plasmodium falciparum antigens synthesized by schizonts and stabilized at the merozoite surface when schizonts mature in the presence of protease inhibitors. J Immunol. 1986 Mar 15;136(6):2245–2251. [PubMed] [Google Scholar]
  16. Maly Dustin J., Leonetti Francesco, Backes Bradley J., Dauber Deborah S., Harris Jennifer L., Craik Charles S., Ellman Jonathan A. Expedient solid-phase synthesis of fluorogenic protease substrates using the 7-amino-4-carbamoylmethylcoumarin (ACC) fluorophore. J Org Chem. 2002 Feb 8;67(3):910–915. doi: 10.1021/jo016140o. [DOI] [PubMed] [Google Scholar]
  17. Mendis K., Sina B. J., Marchesini P., Carter R. The neglected burden of Plasmodium vivax malaria. Am J Trop Med Hyg. 2001 Jan-Feb;64(1-2):97–106. doi: 10.4269/ajtmh.2001.64.97. [DOI] [PubMed] [Google Scholar]
  18. Olson J. E., Lee G. K., Semenov A., Rosenthal P. J. Antimalarial effects in mice of orally administered peptidyl cysteine protease inhibitors. Bioorg Med Chem. 1999 Apr;7(4):633–638. doi: 10.1016/s0968-0896(99)00004-8. [DOI] [PubMed] [Google Scholar]
  19. Rosenthal P. J. A Plasmodium vinckei cysteine proteinase shares unique features with its Plasmodium falciparum analogue. Biochim Biophys Acta. 1993 Apr 29;1173(1):91–93. doi: 10.1016/0167-4781(93)90250-h. [DOI] [PubMed] [Google Scholar]
  20. Rosenthal P. J., Lee G. K., Smith R. E. Inhibition of a Plasmodium vinckei cysteine proteinase cures murine malaria. J Clin Invest. 1993 Mar;91(3):1052–1056. doi: 10.1172/JCI116262. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Rosenthal P. J., McKerrow J. H., Aikawa M., Nagasawa H., Leech J. H. A malarial cysteine proteinase is necessary for hemoglobin degradation by Plasmodium falciparum. J Clin Invest. 1988 Nov;82(5):1560–1566. doi: 10.1172/JCI113766. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Rosenthal P. J., Wollish W. S., Palmer J. T., Rasnick D. Antimalarial effects of peptide inhibitors of a Plasmodium falciparum cysteine proteinase. J Clin Invest. 1991 Nov;88(5):1467–1472. doi: 10.1172/JCI115456. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Rosenthal Philip J. Hydrolysis of erythrocyte proteins by proteases of malaria parasites. Curr Opin Hematol. 2002 Mar;9(2):140–145. doi: 10.1097/00062752-200203000-00010. [DOI] [PubMed] [Google Scholar]
  24. Rosenthal Philip J., Sijwali Puran S., Singh Ajay, Shenai Bhaskar R. Cysteine proteases of malaria parasites: targets for chemotherapy. Curr Pharm Des. 2002;8(18):1659–1672. doi: 10.2174/1381612023394197. [DOI] [PubMed] [Google Scholar]
  25. Salas F., Fichmann J., Lee G. K., Scott M. D., Rosenthal P. J. Functional expression of falcipain, a Plasmodium falciparum cysteine proteinase, supports its role as a malarial hemoglobinase. Infect Immun. 1995 Jun;63(6):2120–2125. doi: 10.1128/iai.63.6.2120-2125.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Shenai B. R., Sijwali P. S., Singh A., Rosenthal P. J. Characterization of native and recombinant falcipain-2, a principal trophozoite cysteine protease and essential hemoglobinase of Plasmodium falciparum. J Biol Chem. 2000 Sep 15;275(37):29000–29010. doi: 10.1074/jbc.M004459200. [DOI] [PubMed] [Google Scholar]
  27. Shenai Bhaskar R., Lee Belinda J., Alvarez-Hernandez Alejandro, Chong Pek Y., Emal Cory D., Neitz R. Jeffrey, Roush William R., Rosenthal Philip J. Structure-activity relationships for inhibition of cysteine protease activity and development of Plasmodium falciparum by peptidyl vinyl sulfones. Antimicrob Agents Chemother. 2003 Jan;47(1):154–160. doi: 10.1128/AAC.47.1.154-160.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Shenai Bhaskar R., Rosenthal Philip J. Reducing requirements for hemoglobin hydrolysis by Plasmodium falciparum cysteine proteases. Mol Biochem Parasitol. 2002 Jun;122(1):99–104. doi: 10.1016/s0166-6851(02)00075-0. [DOI] [PubMed] [Google Scholar]
  29. Shenai Bhaskar R., Semenov Andrey V., Rosenthal Philip J. Stage-specific antimalarial activity of cysteine protease inhibitors. Biol Chem. 2002 May;383(5):843–847. doi: 10.1515/BC.2002.089. [DOI] [PubMed] [Google Scholar]
  30. Sijwali P. S., Brinen L. S., Rosenthal P. J. Systematic optimization of expression and refolding of the Plasmodium falciparum cysteine protease falcipain-2. Protein Expr Purif. 2001 Jun;22(1):128–134. doi: 10.1006/prep.2001.1416. [DOI] [PubMed] [Google Scholar]
  31. Sijwali P. S., Shenai B. R., Gut J., Singh A., Rosenthal P. J. Expression and characterization of the Plasmodium falciparum haemoglobinase falcipain-3. Biochem J. 2001 Dec 1;360(Pt 2):481–489. doi: 10.1042/0264-6021:3600481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Sijwali Puran S., Shenai Bhaskar R., Rosenthal Philip J. Folding of the Plasmodium falciparum cysteine protease falcipain-2 is mediated by a chaperone-like peptide and not the prodomain. J Biol Chem. 2002 Feb 4;277(17):14910–14915. doi: 10.1074/jbc.M109680200. [DOI] [PubMed] [Google Scholar]
  33. Singh Ajay, Shenai Bhaskar R., Choe Youngchool, Gut Jiri, Sijwali Puran S., Craik Charles S., Rosenthal Philip J. Critical role of amino acid 23 in mediating activity and specificity of vinckepain-2, a papain-family cysteine protease of rodent malaria parasites. Biochem J. 2002 Nov 15;368(Pt 1):273–281. doi: 10.1042/BJ20020753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Snow R. W., Trape J. F., Marsh K. The past, present and future of childhood malaria mortality in Africa. Trends Parasitol. 2001 Dec;17(12):593–597. doi: 10.1016/s1471-4922(01)02031-1. [DOI] [PubMed] [Google Scholar]
  35. Tian W. X., Tsou C. L. Determination of the rate constant of enzyme modification by measuring the substrate reaction in the presence of the modifier. Biochemistry. 1982 Mar 2;21(5):1028–1032. doi: 10.1021/bi00534a031. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES