Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 Mar 1;378(Pt 2):435–447. doi: 10.1042/BJ20031466

Bicarbonate enhances alpha-synuclein oligomerization and nitration: intermediacy of carbonate radical anion and nitrogen dioxide radical.

Christopher Andrekopoulos 1, Hao Zhang 1, Joy Joseph 1, Shasi Kalivendi 1, B Kalyanaraman 1
PMCID: PMC1223984  PMID: 14640973

Abstract

alpha-Synuclein, a neuronal presynaptic protein, has been reported to undergo oligomerization to form toxic Lewy bodies in neurodegenerative disorders. One of the proposed mechanisms for aggregation of alpha-synuclein involves oxidative and nitrative modifications. In the present study, we show that addition of 3-morpholino-sydnonimine chloride (SIN-1) or slow infusion of pre-formed peroxynitrite (ONOO-) to mixtures containing alpha-synuclein and HCO3- markedly enhanced both nitration and aggregation of alpha-synuclein through dityrosine formation. Bicarbonate-dependent peroxidase activity of Cu,Zn-superoxide dismutase (SOD1) also induced covalent aggregation of alpha-synuclein via a CO3*--dependent mechanism. Nitrone spin traps completely inhibited CO3*--mediated oxidation/nitration and aggregation of alpha-synuclein. Conversely, alpha-synuclein inhibited CO3*--induced spin adduct formation. Independent evidence for CO3*--mediated oxidation and dimerization of alpha-synuclein was obtained from UV photolysis of [(NH3)5CoCO3]+, which generates authentic CO3*-. Irradiation of [(NH3)5CoCO3]+ and NO2- in the presence of alpha-synuclein yielded nitration and aggregation products that were similar to those obtained from a SIN-1 (or slowly infused ONOO-) and HCO3- or a myeloperoxidase/H2O2/NO2- system. Hydrophobic membranes greatly influenced alpha-synuclein aggregation and nitration in these systems. We conclude that both CO3*- and NO2* could play a major role in the nitration/aggregation of alpha-synuclein.

Full Text

The Full Text of this article is available as a PDF (447.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beckman J. S., Chen J., Ischiropoulos H., Crow J. P. Oxidative chemistry of peroxynitrite. Methods Enzymol. 1994;233:229–240. doi: 10.1016/s0076-6879(94)33026-3. [DOI] [PubMed] [Google Scholar]
  2. Brennan Marie-Luise, Wu Weijia, Fu Xiaoming, Shen Zhongzhu, Song Wei, Frost Heather, Vadseth Caryn, Narine Laura, Lenkiewicz Elizabeth, Borchers Michael T. A tale of two controversies: defining both the role of peroxidases in nitrotyrosine formation in vivo using eosinophil peroxidase and myeloperoxidase-deficient mice, and the nature of peroxidase-generated reactive nitrogen species. J Biol Chem. 2002 Feb 27;277(20):17415–17427. doi: 10.1074/jbc.M112400200. [DOI] [PubMed] [Google Scholar]
  3. Chen S. N., Hoffman M. Z. Rate constants for the reaction of the carbonate radical with compounds of biochemical interest in neutral aqueous solution. Radiat Res. 1973 Oct;56(1):40–47. [PubMed] [Google Scholar]
  4. Choi Ju-Youn, Sung Young-Mo, Park Hyo-Jin, Hur Eun-Hye, Lee Sun-Joo, Hahn Chul, Min Byung-Re, Kim In-Kyung, Kang Seongman, Rhim Hyangshuk. Rapid purification and analysis of alpha-synuclein proteins: C-terminal truncation promotes the conversion of alpha-synuclein into a protease-sensitive form in Escherichia coli. Biotechnol Appl Biochem. 2002 Aug;36(Pt 1):33–40. doi: 10.1042/ba20020004. [DOI] [PubMed] [Google Scholar]
  5. Cole Nelson B., Murphy Diane D., Grider Theresa, Rueter Susan, Brasaemle Dawn, Nussbaum Robert L. Lipid droplet binding and oligomerization properties of the Parkinson's disease protein alpha-synuclein. J Biol Chem. 2001 Dec 14;277(8):6344–6352. doi: 10.1074/jbc.M108414200. [DOI] [PubMed] [Google Scholar]
  6. Davidson W. S., Jonas A., Clayton D. F., George J. M. Stabilization of alpha-synuclein secondary structure upon binding to synthetic membranes. J Biol Chem. 1998 Apr 17;273(16):9443–9449. doi: 10.1074/jbc.273.16.9443. [DOI] [PubMed] [Google Scholar]
  7. Eiserich J. P., Cross C. E., Jones A. D., Halliwell B., van der Vliet A. Formation of nitrating and chlorinating species by reaction of nitrite with hypochlorous acid. A novel mechanism for nitric oxide-mediated protein modification. J Biol Chem. 1996 Aug 9;271(32):19199–19208. doi: 10.1074/jbc.271.32.19199. [DOI] [PubMed] [Google Scholar]
  8. Espey Michael G., Thomas Douglas D., Miranda Katrina M., Wink David A. Focusing of nitric oxide mediated nitrosation and oxidative nitrosylation as a consequence of reaction with superoxide. Proc Natl Acad Sci U S A. 2002 Aug 12;99(17):11127–11132. doi: 10.1073/pnas.152157599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Giasson B. I., Duda J. E., Murray I. V., Chen Q., Souza J. M., Hurtig H. I., Ischiropoulos H., Trojanowski J. Q., Lee V. M. Oxidative damage linked to neurodegeneration by selective alpha-synuclein nitration in synucleinopathy lesions. Science. 2000 Nov 3;290(5493):985–989. doi: 10.1126/science.290.5493.985. [DOI] [PubMed] [Google Scholar]
  10. Goss S. P., Singh R. J., Kalyanaraman B. Bicarbonate enhances the peroxidase activity of Cu,Zn-superoxide dismutase. Role of carbonate anion radical. J Biol Chem. 1999 Oct 1;274(40):28233–28239. doi: 10.1074/jbc.274.40.28233. [DOI] [PubMed] [Google Scholar]
  11. Hodgson E. K., Fridovich I. The interaction of bovine erythrocyte superoxide dismutase with hydrogen peroxide: chemiluminescence and peroxidation. Biochemistry. 1975 Dec 2;14(24):5299–5303. doi: 10.1021/bi00695a011. [DOI] [PubMed] [Google Scholar]
  12. Hodgson E. K., Fridovich I. The interaction of bovine erythrocyte superoxide dismutase with hydrogen peroxide: inactivation of the enzyme. Biochemistry. 1975 Dec 2;14(24):5294–5299. doi: 10.1021/bi00695a010. [DOI] [PubMed] [Google Scholar]
  13. Hodgson E. K., Fridovich I. The mechanism of the activity-dependent luminescence of xanthine oxidase. Arch Biochem Biophys. 1976 Jan;172(1):202–205. doi: 10.1016/0003-9861(76)90067-9. [DOI] [PubMed] [Google Scholar]
  14. Hogg N., Darley-Usmar V. M., Wilson M. T., Moncada S. Production of hydroxyl radicals from the simultaneous generation of superoxide and nitric oxide. Biochem J. 1992 Jan 15;281(Pt 2):419–424. doi: 10.1042/bj2810419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ignarro L. J., Buga G. M., Wood K. S., Byrns R. E., Chaudhuri G. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci U S A. 1987 Dec;84(24):9265–9269. doi: 10.1073/pnas.84.24.9265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Ischiropoulos H. Biological tyrosine nitration: a pathophysiological function of nitric oxide and reactive oxygen species. Arch Biochem Biophys. 1998 Aug 1;356(1):1–11. doi: 10.1006/abbi.1998.0755. [DOI] [PubMed] [Google Scholar]
  17. Jakes R., Spillantini M. G., Goedert M. Identification of two distinct synucleins from human brain. FEBS Lett. 1994 May 23;345(1):27–32. doi: 10.1016/0014-5793(94)00395-5. [DOI] [PubMed] [Google Scholar]
  18. Jourd'heuil D., Miranda K. M., Kim S. M., Espey M. G., Vodovotz Y., Laroux S., Mai C. T., Miles A. M., Grisham M. B., Wink D. A. The oxidative and nitrosative chemistry of the nitric oxide/superoxide reaction in the presence of bicarbonate. Arch Biochem Biophys. 1999 May 1;365(1):92–100. doi: 10.1006/abbi.1999.1143. [DOI] [PubMed] [Google Scholar]
  19. Kim Kyung Sik, Choi Soo Young, Kwon Hyeok Yil, Won Moo Ho, Kang Tae Cheon, Kang Jung Hoon. Aggregation of alpha-synuclein induced by the Cu,Zn-superoxide dismutase and hydrogen peroxide system. Free Radic Biol Med. 2002 Mar 15;32(6):544–550. doi: 10.1016/s0891-5849(02)00741-4. [DOI] [PubMed] [Google Scholar]
  20. Krishnan Sampathkumar, Chi Eva Y., Wood Stephen J., Kendrick Brent S., Li Cynthia, Garzon-Rodriguez William, Wypych Jette, Randolph Theodore W., Narhi Linda O., Biere Anja Leona. Oxidative dimer formation is the critical rate-limiting step for Parkinson's disease alpha-synuclein fibrillogenesis. Biochemistry. 2003 Jan 28;42(3):829–837. doi: 10.1021/bi026528t. [DOI] [PubMed] [Google Scholar]
  21. Liochev S. I., Fridovich I. On the role of bicarbonate in peroxidations catalyzed by Cu,Zn superoxide dismutase. Free Radic Biol Med. 1999 Dec;27(11-12):1444–1447. doi: 10.1016/s0891-5849(99)00190-2. [DOI] [PubMed] [Google Scholar]
  22. Liu X., Miller M. J., Joshi M. S., Thomas D. D., Lancaster J. R., Jr Accelerated reaction of nitric oxide with O2 within the hydrophobic interior of biological membranes. Proc Natl Acad Sci U S A. 1998 Mar 3;95(5):2175–2179. doi: 10.1073/pnas.95.5.2175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lymar S. V., Hurst J. K. Carbon dioxide: physiological catalyst for peroxynitrite-mediated cellular damage or cellular protectant? Chem Res Toxicol. 1996 Jul-Aug;9(5):845–850. doi: 10.1021/tx960046z. [DOI] [PubMed] [Google Scholar]
  24. Norris Erin H., Giasson Benoit I., Ischiropoulos Harry, Lee Virginia M-Y. Effects of oxidative and nitrative challenges on alpha-synuclein fibrillogenesis involve distinct mechanisms of protein modifications. J Biol Chem. 2003 May 8;278(29):27230–27240. doi: 10.1074/jbc.M212436200. [DOI] [PubMed] [Google Scholar]
  25. Perrin R. J., Woods W. S., Clayton D. F., George J. M. Exposure to long chain polyunsaturated fatty acids triggers rapid multimerization of synucleins. J Biol Chem. 2001 Sep 11;276(45):41958–41962. doi: 10.1074/jbc.M105022200. [DOI] [PubMed] [Google Scholar]
  26. Rosen Henry, Crowley Jan R., Heinecke Jay W. Human neutrophils use the myeloperoxidase-hydrogen peroxide-chloride system to chlorinate but not nitrate bacterial proteins during phagocytosis. J Biol Chem. 2002 Jun 11;277(34):30463–30468. doi: 10.1074/jbc.M202331200. [DOI] [PubMed] [Google Scholar]
  27. Scheer J. M., Ryan C. A. A method for the quantitative recovery of proteins from polyacrylamide gels. Anal Biochem. 2001 Nov 1;298(1):130–132. doi: 10.1006/abio.2001.5384. [DOI] [PubMed] [Google Scholar]
  28. Souza J. M., Giasson B. I., Chen Q., Lee V. M., Ischiropoulos H. Dityrosine cross-linking promotes formation of stable alpha -synuclein polymers. Implication of nitrative and oxidative stress in the pathogenesis of neurodegenerative synucleinopathies. J Biol Chem. 2000 Jun 16;275(24):18344–18349. doi: 10.1074/jbc.M000206200. [DOI] [PubMed] [Google Scholar]
  29. Spillantini M. G., Schmidt M. L., Lee V. M., Trojanowski J. Q., Jakes R., Goedert M. Alpha-synuclein in Lewy bodies. Nature. 1997 Aug 28;388(6645):839–840. doi: 10.1038/42166. [DOI] [PubMed] [Google Scholar]
  30. Squadrito G. L., Pryor W. A. Oxidative chemistry of nitric oxide: the roles of superoxide, peroxynitrite, and carbon dioxide. Free Radic Biol Med. 1998 Sep;25(4-5):392–403. doi: 10.1016/s0891-5849(98)00095-1. [DOI] [PubMed] [Google Scholar]
  31. Takahashi Tetsuya, Yamashita Hiroshi, Nakamura Takeshi, Nagano Yoshito, Nakamura Shigenobu. Tyrosine 125 of alpha-synuclein plays a critical role for dimerization following nitrative stress. Brain Res. 2002 May 31;938(1-2):73–80. doi: 10.1016/s0006-8993(02)02498-8. [DOI] [PubMed] [Google Scholar]
  32. Vásquez-Vivar J., Hogg N., Martásek P., Karoui H., Pritchard K. A., Jr, Kalyanaraman B. Tetrahydrobiopterin-dependent inhibition of superoxide generation from neuronal nitric oxide synthase. J Biol Chem. 1999 Sep 17;274(38):26736–26742. doi: 10.1074/jbc.274.38.26736. [DOI] [PubMed] [Google Scholar]
  33. Weinreb P. H., Zhen W., Poon A. W., Conway K. A., Lansbury P. T., Jr NACP, a protein implicated in Alzheimer's disease and learning, is natively unfolded. Biochemistry. 1996 Oct 29;35(43):13709–13715. doi: 10.1021/bi961799n. [DOI] [PubMed] [Google Scholar]
  34. Zhang H., Joseph J., Feix J., Hogg N., Kalyanaraman B. Nitration and oxidation of a hydrophobic tyrosine probe by peroxynitrite in membranes: comparison with nitration and oxidation of tyrosine by peroxynitrite in aqueous solution. Biochemistry. 2001 Jun 26;40(25):7675–7686. doi: 10.1021/bi002958c. [DOI] [PubMed] [Google Scholar]
  35. Zhang H., Joseph J., Felix C., Kalyanaraman B. Bicarbonate enhances the hydroxylation, nitration, and peroxidation reactions catalyzed by copper, zinc superoxide dismutase. Intermediacy of carbonate anion radical. J Biol Chem. 2000 May 12;275(19):14038–14045. doi: 10.1074/jbc.275.19.14038. [DOI] [PubMed] [Google Scholar]
  36. Zhang Hao, Bhargava Kalpana, Keszler Agnes, Feix Jimmy, Hogg Neil, Joseph Joy, Kalyanaraman B. Transmembrane nitration of hydrophobic tyrosyl peptides. Localization, characterization, mechanism of nitration, and biological implications. J Biol Chem. 2003 Jan 7;278(11):8969–8978. doi: 10.1074/jbc.M211561200. [DOI] [PubMed] [Google Scholar]
  37. Zhang Hao, Joseph Joy, Gurney Mark, Becker David, Kalyanaraman B. Bicarbonate enhances peroxidase activity of Cu,Zn-superoxide dismutase. Role of carbonate anion radical and scavenging of carbonate anion radical by metalloporphyrin antioxidant enzyme mimetics. J Biol Chem. 2001 Oct 26;277(2):1013–1020. doi: 10.1074/jbc.M108585200. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES