Abstract
Electron-transfer flavoprotein (ETF)-ubiquinone (2,3-dimethoxy-5-methyl-1,4-benzoquinone) oxidoreductase (ETF-QO) is a membrane-bound iron-sulphur flavoprotein that participates in an electron-transport pathway between eleven mitochondrial flavoprotein dehydrogenases and the ubiquinone pool. ETF is the intermediate electron carrier between the dehydrogenases and ETF-QO. The steady-state kinetic constants of human ETF-QO were determined with ubiquinone homologues and analogues that contained saturated n-alkyl substituents at the 6 position. These experiments show that optimal substrates contain a ten-carbon-atom side chain, consistent with a preliminary crystal structure that shows that only the first two of ten isoprene units of co-enzyme Q10 (CoQ10) interact with the protein. Derivatives with saturated alkyl side chains are very good substrates, indicating that, unlike other ubiquinone oxidoreductases, there is little preference for the methyl branches or rigidity of the CoQ side chain. Few of the compounds that inhibit ubiquinone oxidoreductases inhibit ETF-QO. Compounds found to act as inhibitors of ETF-QO include 2-n-heptyl-4-hydroxyquinoline N-oxide, a naphthoquinone analogue, 2-(3-methylpentyl)-4,6-dinitrophenol and pentachlorophenol. 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB), which inhibits the mitochondrial bc1 complex and the chloroplast b6 f complex in redox-dependent fashion, can serve as an electron acceptor for human ETF-QO. The observation of simple Michaelis-Menten kinetic patterns and a single type of quinone-binding site, determined by fluorescence titrations of the protein with DBMIB and 6-(10-bromodecyl)ubiquinone, are consistent with one ubiquinone-binding site per ETF-QO monomer.
Full Text
The Full Text of this article is available as a PDF (190.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allen J. P., Feher G., Yeates T. O., Komiya H., Rees D. C. Structure of the reaction center from Rhodobacter sphaeroides R-26: the protein subunits. Proc Natl Acad Sci U S A. 1987 Sep;84(17):6162–6166. doi: 10.1073/pnas.84.17.6162. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beckmann J. D., Frerman F. E. Electron-transfer flavoprotein-ubiquinone oxidoreductase from pig liver: purification and molecular, redox, and catalytic properties. Biochemistry. 1985 Jul 16;24(15):3913–3921. doi: 10.1021/bi00336a016. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Degli Esposti M., Rotilio G., Lenaz G. Effects of dibromothymoquinone on the structure and function of the mitochondrial bc1 complex. Biochim Biophys Acta. 1984 Oct 26;767(1):10–20. doi: 10.1016/0005-2728(84)90074-4. [DOI] [PubMed] [Google Scholar]
- Degli Esposti M., Rugolo M., Lenaz G. Inhibition of the mitochondrial bc1 complex by dibromothymoquinone. FEBS Lett. 1983 May 30;156(1):15–19. doi: 10.1016/0014-5793(83)80238-5. [DOI] [PubMed] [Google Scholar]
- Draber W., Trebst A., Harth E. On a new inhibitor of photosynthetic electron-transport in isolated chloroplasts. Z Naturforsch B. 1970 Oct;25(10):1157–1159. doi: 10.1515/znb-1970-1018. [DOI] [PubMed] [Google Scholar]
- DuPlessis E. R., Pellett J., Stankovich M. T., Thorpe C. Oxidase activity of the acyl-CoA dehydrogenases. Biochemistry. 1998 Jul 21;37(29):10469–10477. doi: 10.1021/bi980767s. [DOI] [PubMed] [Google Scholar]
- Frerman F. E. Acyl-CoA dehydrogenases, electron transfer flavoprotein and electron transfer flavoprotein dehydrogenase. Biochem Soc Trans. 1988 Jun;16(3):416–418. doi: 10.1042/bst0160416. [DOI] [PubMed] [Google Scholar]
- Frerman F. E. Reaction of electron-transfer flavoprotein ubiquinone oxidoreductase with the mitochondrial respiratory chain. Biochim Biophys Acta. 1987 Sep 10;893(2):161–169. doi: 10.1016/0005-2728(87)90035-1. [DOI] [PubMed] [Google Scholar]
- Goodman S. I., Axtell K. M., Bindoff L. A., Beard S. E., Gill R. E., Frerman F. E. Molecular cloning and expression of a cDNA encoding human electron transfer flavoprotein-ubiquinone oxidoreductase. Eur J Biochem. 1994 Jan 15;219(1-2):277–286. doi: 10.1111/j.1432-1033.1994.tb19939.x. [DOI] [PubMed] [Google Scholar]
- Griffin K. J., Degala G. D., Eisenreich W., Müller F., Bacher A., Frerman F. E. 31P-NMR spectroscopy of human and Paracoccus denitrificans electron transfer flavoproteins, and 13C- and 15N-NMR spectroscopy of human electron transfer flavoprotein in the oxidised and reduced states. Eur J Biochem. 1998 Jul 1;255(1):125–132. doi: 10.1046/j.1432-1327.1998.2550125.x. [DOI] [PubMed] [Google Scholar]
- Iverson Tina M., Luna-Chavez César, Croal Laura R., Cecchini Gary, Rees Douglas C. Crystallographic studies of the Escherichia coli quinol-fumarate reductase with inhibitors bound to the quinol-binding site. J Biol Chem. 2002 Feb 15;277(18):16124–16130. doi: 10.1074/jbc.M200815200. [DOI] [PubMed] [Google Scholar]
- Lam E. The effects of quinone analogues on cytochrome b6 reduction and oxidation in a reconstituted system. FEBS Lett. 1984 Jul 9;172(2):255–260. doi: 10.1016/0014-5793(84)81136-9. [DOI] [PubMed] [Google Scholar]
- Lancaster C. R., Michel H. Refined crystal structures of reaction centres from Rhodopseudomonas viridis in complexes with the herbicide atrazine and two chiral atrazine derivatives also lead to a new model of the bound carotenoid. J Mol Biol. 1999 Feb 26;286(3):883–898. doi: 10.1006/jmbi.1998.2532. [DOI] [PubMed] [Google Scholar]
- Lehrer S. S., Fasman G. D. The fluorescence of lysozyme and lysozyme substrate complexes. Biochem Biophys Res Commun. 1966 Apr 19;23(2):133–138. doi: 10.1016/0006-291x(66)90517-1. [DOI] [PubMed] [Google Scholar]
- Maklashina E., Cecchini G. Comparison of catalytic activity and inhibitors of quinone reactions of succinate dehydrogenase (Succinate-ubiquinone oxidoreductase) and fumarate reductase (Menaquinol-fumarate oxidoreductase) from Escherichia coli. Arch Biochem Biophys. 1999 Sep 15;369(2):223–232. doi: 10.1006/abbi.1999.1359. [DOI] [PubMed] [Google Scholar]
- Maklashina E., Rothery R. A., Weiner J. H., Cecchini G. Retention of heme in axial ligand mutants of succinate-ubiquinone xxidoreductase (complex II) from Escherichia coli. J Biol Chem. 2001 Mar 19;276(22):18968–18976. doi: 10.1074/jbc.M011270200. [DOI] [PubMed] [Google Scholar]
- Page C. C., Moser C. C., Chen X., Dutton P. L. Natural engineering principles of electron tunnelling in biological oxidation-reduction. Nature. 1999 Nov 4;402(6757):47–52. doi: 10.1038/46972. [DOI] [PubMed] [Google Scholar]
- Paulsen K. E., Orville A. M., Frerman F. E., Lipscomb J. D., Stankovich M. T. Redox properties of electron-transfer flavoprotein ubiquinone oxidoreductase as determined by EPR-spectroelectrochemistry. Biochemistry. 1992 Dec 1;31(47):11755–11761. doi: 10.1021/bi00162a012. [DOI] [PubMed] [Google Scholar]
- Ramsay R. R., Steenkamp D. J., Husain M. Reactions of electron-transfer flavoprotein and electron-transfer flavoprotein: ubiquinone oxidoreductase. Biochem J. 1987 Feb 1;241(3):883–892. doi: 10.1042/bj2410883. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rich P. R., Bendall D. S. The kinetics and thermodynamics of the reduction of cytochrome c by substituted p-benzoquinols in solution. Biochim Biophys Acta. 1980 Oct 3;592(3):506–518. doi: 10.1016/0005-2728(80)90095-x. [DOI] [PubMed] [Google Scholar]
- Rothery R. A., Weiner J. H. Interaction of an engineered [3Fe-4S] cluster with a menaquinol binding site of Escherichia coli DMSO reductase. Biochemistry. 1996 Mar 12;35(10):3247–3257. doi: 10.1021/bi951584y. [DOI] [PubMed] [Google Scholar]
- Saitoh I., Miyoshi H., Shimizu R., Iwamura H. Comparison of structure of quinone redox site in the mitochondrial cytochrome-bc1 complex and photosystem II (QB site). Eur J Biochem. 1992 Oct 1;209(1):73–79. doi: 10.1111/j.1432-1033.1992.tb17262.x. [DOI] [PubMed] [Google Scholar]
- Sakamoto K., Miyoshi H., Ohshima M., Kuwabara K., Kano K., Akagi T., Mogi T., Iwamura H. Role of the isoprenyl tail of ubiquinone in reaction with respiratory enzymes: studies with bovine heart mitochondrial complex I and Escherichia coli bo-type ubiquinol oxidase. Biochemistry. 1998 Oct 27;37(43):15106–15113. doi: 10.1021/bi981193u. [DOI] [PubMed] [Google Scholar]
- Samworth C. M., Degli Esposti M., Lenaz G. Quenching of the intrinsic tryptophan fluorescence of mitochondrial ubiquinol--cytochrome-c reductase by the binding of ubiquinone. Eur J Biochem. 1988 Jan 15;171(1-2):81–86. doi: 10.1111/j.1432-1033.1988.tb13761.x. [DOI] [PubMed] [Google Scholar]
- Sato-Watanabe M., Mogi T., Miyoshi H., Iwamura H., Matsushita K., Adachi O., Anraku Y. Structure-function studies on the ubiquinol oxidation site of the cytochrome bo complex from Escherichia coli using p-benzoquinones and substituted phenols. J Biol Chem. 1994 Nov 18;269(46):28899–28907. [PubMed] [Google Scholar]
- Simkovic Martin, Degala Gregory D., Eaton Sandra S., Frerman Frank E. Expression of human electron transfer flavoprotein-ubiquinone oxidoreductase from a baculovirus vector: kinetic and spectral characterization of the human protein. Biochem J. 2002 Jun 15;364(Pt 3):659–667. doi: 10.1042/BJ20020042. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smirnova I. A., Hägerhäll C., Konstantinov A. A., Hederstedt L. HOQNO interaction with cytochrome b in succinate:menaquinone oxidoreductase from Bacillus subtilis. FEBS Lett. 1995 Feb 6;359(1):23–26. doi: 10.1016/0014-5793(94)01442-4. [DOI] [PubMed] [Google Scholar]
- Tan A. K., Ramsay R. R., Singer T. P., Miyoshi H. Comparison of the structures of the quinone-binding sites in beef heart mitochondria. J Biol Chem. 1993 Sep 15;268(26):19328–19333. [PubMed] [Google Scholar]
- Van Ark G., Berden J. A. Binding of HQNO to beef-heart sub-mitochondrial particles. Biochim Biophys Acta. 1977 Jan 6;459(1):119–127. doi: 10.1016/0005-2728(77)90014-7. [DOI] [PubMed] [Google Scholar]
- Warncke K., Gunner M. R., Braun B. S., Gu L., Yu C. A., Bruce J. M., Dutton P. L. Influence of hydrocarbon tail structure on quinone binding and electron-transfer performance at the QA and QB sites of the photosynthetic reaction center protein. Biochemistry. 1994 Jun 28;33(25):7830–7841. doi: 10.1021/bi00191a010. [DOI] [PubMed] [Google Scholar]
- Watmough N. J., Loehr J. P., Drake S. K., Frerman F. E. Tryptophan fluorescence in electron-transfer flavoprotein:ubiquinone oxidoreductase: fluorescence quenching by a brominated pseudosubstrate. Biochemistry. 1991 Feb 5;30(5):1317–1323. doi: 10.1021/bi00219a023. [DOI] [PubMed] [Google Scholar]
- Wissenbach U., Kröger A., Unden G. The specific functions of menaquinone and demethylmenaquinone in anaerobic respiration with fumarate, dimethylsulfoxide, trimethylamine N-oxide and nitrate by Escherichia coli. Arch Microbiol. 1990;154(1):60–66. doi: 10.1007/BF00249179. [DOI] [PubMed] [Google Scholar]
- Yankovskaya V., Sablin S. O., Ramsay R. R., Singer T. P., Ackrell B. A., Cecchini G., Miyoshi H. Inhibitor probes of the quinone binding sites of mammalian complex II and Escherichia coli fumarate reductase. J Biol Chem. 1996 Aug 30;271(35):21020–21024. doi: 10.1074/jbc.271.35.21020. [DOI] [PubMed] [Google Scholar]
- Yu C. A., Gu L. Q., Lin Y. Z., Yu L. Effect of alkyl side chain variation on the electron-transfer activity of ubiquinone derivatives. Biochemistry. 1985 Jul 16;24(15):3897–3902. doi: 10.1021/bi00336a013. [DOI] [PubMed] [Google Scholar]
- Yu C. A., Yu L. Syntheses of biologically active ubiquinone derivatives. Biochemistry. 1982 Aug 17;21(17):4096–4101. doi: 10.1021/bi00260a028. [DOI] [PubMed] [Google Scholar]