Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 Mar 1;378(Pt 2):293–297. doi: 10.1042/BJ20031669

A novel copper site in a cyanobacterial metallochaperone.

Gilles P M Borrelly 1, Claudia A Blindauer 1, Ralf Schmid 1, Clive S Butler 1, Chris E Cooper 1, Ian Harvey 1, Peter J Sadler 1, Nigel J Robinson 1
PMCID: PMC1223992  PMID: 14711369

Abstract

The thylakoid lumen of the cyanobacterium Synechocystis PCC 6803 is supplied with copper via two copper-transporting ATPases and a metallochaperone intermediary. We show that the copper site of this metallochaperone is unusual and consists of two cysteine residues and a histidine imidazole located on structurally dynamic loops. Substitution of this histidine residue enhances bacterial two-hybrid interaction with the cytosolic copper exporter, but not the copper importer, suggesting that the interacting surfaces are distinct, with implications for metal transfer.

Full Text

The Full Text of this article is available as a PDF (230.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnesano F., Banci L., Bertini I., Huffman D. L., O'Halloran T. V. Solution structure of the Cu(I) and apo forms of the yeast metallochaperone, Atx1. Biochemistry. 2001 Feb 13;40(6):1528–1539. doi: 10.1021/bi0014711. [DOI] [PubMed] [Google Scholar]
  2. Banci L., Bertini I., Del Conte R., Markey J., Ruiz-Dueñas F. J. Copper trafficking: the solution structure of Bacillus subtilis CopZ. Biochemistry. 2001 Dec 25;40(51):15660–15668. doi: 10.1021/bi0112715. [DOI] [PubMed] [Google Scholar]
  3. Bower M. J., Cohen F. E., Dunbrack R. L., Jr Prediction of protein side-chain rotamers from a backbone-dependent rotamer library: a new homology modeling tool. J Mol Biol. 1997 Apr 18;267(5):1268–1282. doi: 10.1006/jmbi.1997.0926. [DOI] [PubMed] [Google Scholar]
  4. Guo Maolin, Harvey Ian, Yang Weiping, Coghill Lorraine, Campopiano Dominic J., Parkinson John A., MacGillivray Ross T. A., Harris Wesley R., Sadler Peter J. Synergistic anion and metal binding to the ferric ion-binding protein from Neisseria gonorrhoeae. J Biol Chem. 2002 Oct 7;278(4):2490–2502. doi: 10.1074/jbc.M208776200. [DOI] [PubMed] [Google Scholar]
  5. Kanamaru K., Kashiwagi S., Mizuno T. A copper-transporting P-type ATPase found in the thylakoid membrane of the cyanobacterium Synechococcus species PCC7942. Mol Microbiol. 1994 Jul;13(2):369–377. doi: 10.1111/j.1365-2958.1994.tb00430.x. [DOI] [PubMed] [Google Scholar]
  6. Klomp L. W., Lin S. J., Yuan D. S., Klausner R. D., Culotta V. C., Gitlin J. D. Identification and functional expression of HAH1, a novel human gene involved in copper homeostasis. J Biol Chem. 1997 Apr 4;272(14):9221–9226. doi: 10.1074/jbc.272.14.9221. [DOI] [PubMed] [Google Scholar]
  7. Koradi R., Billeter M., Wüthrich K. MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graph. 1996 Feb;14(1):51-5, 29-32. doi: 10.1016/0263-7855(96)00009-4. [DOI] [PubMed] [Google Scholar]
  8. Lin S. J., Culotta V. C. The ATX1 gene of Saccharomyces cerevisiae encodes a small metal homeostasis factor that protects cells against reactive oxygen toxicity. Proc Natl Acad Sci U S A. 1995 Apr 25;92(9):3784–3788. doi: 10.1073/pnas.92.9.3784. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lutsenko S., Kaplan J. H. P-type ATPases. Trends Biochem Sci. 1996 Dec;21(12):467–467. doi: 10.1016/s0968-0004(96)20029-5. [DOI] [PubMed] [Google Scholar]
  10. Martí-Renom M. A., Stuart A. C., Fiser A., Sánchez R., Melo F., Sali A. Comparative protein structure modeling of genes and genomes. Annu Rev Biophys Biomol Struct. 2000;29:291–325. doi: 10.1146/annurev.biophys.29.1.291. [DOI] [PubMed] [Google Scholar]
  11. Merchant S., Bogorad L. Metal ion regulated gene expression: use of a plastocyanin-less mutant of Chlamydomonas reinhardtii to study the Cu(II)-dependent expression of cytochrome c-552. EMBO J. 1987 Sep;6(9):2531–2535. doi: 10.1002/j.1460-2075.1987.tb02540.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Odermatt A., Solioz M. Two trans-acting metalloregulatory proteins controlling expression of the copper-ATPases of Enterococcus hirae. J Biol Chem. 1995 Mar 3;270(9):4349–4354. doi: 10.1074/jbc.270.9.4349. [DOI] [PubMed] [Google Scholar]
  13. Phung L. T., Ajlani G., Haselkorn R. P-type ATPase from the cyanobacterium Synechococcus 7942 related to the human Menkes and Wilson disease gene products. Proc Natl Acad Sci U S A. 1994 Sep 27;91(20):9651–9654. doi: 10.1073/pnas.91.20.9651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Pufahl R. A., Singer C. P., Peariso K. L., Lin S. J., Schmidt P. J., Fahrni C. J., Culotta V. C., Penner-Hahn J. E., O'Halloran T. V. Metal ion chaperone function of the soluble Cu(I) receptor Atx1. Science. 1997 Oct 31;278(5339):853–856. doi: 10.1126/science.278.5339.853. [DOI] [PubMed] [Google Scholar]
  15. Radford David S., Kihlken Margaret A., Borrelly Gilles P. M., Harwood Colin R., Le Brun Nick E., Cavet Jennifer S. CopZ from Bacillus subtilis interacts in vivo with a copper exporting CPx-type ATPase CopA. FEMS Microbiol Lett. 2003 Mar 14;220(1):105–112. doi: 10.1016/S0378-1097(03)00095-8. [DOI] [PubMed] [Google Scholar]
  16. Rutherford J. C., Cavet J. S., Robinson N. J. Cobalt-dependent transcriptional switching by a dual-effector MerR-like protein regulates a cobalt-exporting variant CPx-type ATPase. J Biol Chem. 1999 Sep 3;274(36):25827–25832. doi: 10.1074/jbc.274.36.25827. [DOI] [PubMed] [Google Scholar]
  17. Shikanai Toshiharu, Müller-Moulé Patricia, Munekage Yuri, Niyogi Krishna K., Pilon Marinus. PAA1, a P-type ATPase of Arabidopsis, functions in copper transport in chloroplasts. Plant Cell. 2003 Jun;15(6):1333–1346. doi: 10.1105/tpc.011817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Solioz M., Vulpe C. CPx-type ATPases: a class of P-type ATPases that pump heavy metals. Trends Biochem Sci. 1996 Jul;21(7):237–241. [PubMed] [Google Scholar]
  19. Tottey S., Rich P. R., Rondet S. A., Robinson N. J. Two Menkes-type atpases supply copper for photosynthesis in Synechocystis PCC 6803. J Biol Chem. 2001 Mar 22;276(23):19999–20004. doi: 10.1074/jbc.M011243200. [DOI] [PubMed] [Google Scholar]
  20. Tottey Stephen, Rondet Sabine A. M., Borrelly Gilles P. M., Robinson Pamela J., Rich Peter R., Robinson Nigel J. A copper metallochaperone for photosynthesis and respiration reveals metal-specific targets, interaction with an importer, and alternative sites for copper acquisition. J Biol Chem. 2001 Dec 5;277(7):5490–5497. doi: 10.1074/jbc.M105857200. [DOI] [PubMed] [Google Scholar]
  21. Vriend G. WHAT IF: a molecular modeling and drug design program. J Mol Graph. 1990 Mar;8(1):52-6, 29. doi: 10.1016/0263-7855(90)80070-v. [DOI] [PubMed] [Google Scholar]
  22. Wernimont A. K., Huffman D. L., Lamb A. L., O'Halloran T. V., Rosenzweig A. C. Structural basis for copper transfer by the metallochaperone for the Menkes/Wilson disease proteins. Nat Struct Biol. 2000 Sep;7(9):766–771. doi: 10.1038/78999. [DOI] [PubMed] [Google Scholar]
  23. Wimmer R., Herrmann T., Solioz M., Wüthrich K. NMR structure and metal interactions of the CopZ copper chaperone. J Biol Chem. 1999 Aug 6;274(32):22597–22603. doi: 10.1074/jbc.274.32.22597. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Supplemental online data
bj3780293add.pdf (220.2KB, pdf)

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES