Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 Mar 15;378(Pt 3):1031–1037. doi: 10.1042/BJ20031181

Copper stimulates trafficking of a distinct pool of the Menkes copper ATPase (ATP7A) to the plasma membrane and diverts it into a rapid recycling pool.

Luke Pase 1, Ilia Voskoboinik 1, Mark Greenough 1, James Camakaris 1
PMCID: PMC1224002  PMID: 14640979

Abstract

MNK (Menkes copper-translocating P-type ATPase, or the Menkes protein; ATP7A) plays a key role in regulating copper homoeostasis in humans. MNK has been shown to have a dual role in the cell: it delivers copper to cuproenzymes in the Golgi compartment and effluxes excess copper from the cell. These roles can be achieved through copper-regulated trafficking of MNK. It has previously been shown to undergo trafficking from the trans -Golgi network to the plasma membrane in response to elevated copper concentrations, and to be endocytosed from the plasma membrane to the trans -Golgi network upon the removal of elevated copper. However, the fundamental question as to whether copper influences trafficking of MNK to or from the plasma membrane remained unanswered. In this study we utilized various methods of cell-surface biotinylation to attempt to resolve this issue. These studies suggest that copper induces trafficking of MNK to the plasma membrane but does not affect its rate of internalization from the plasma membrane. We also found that only a specific pool of MNK can traffic to the plasma membrane in response to elevated copper. Significantly, copper appeared to divert MNK into a fast-recycling pool and prevented it from recycling to the Golgi compartment, thus maintaining a high level of MNK in the proximity of the plasma membrane. These findings shed new light on the cell biology of MNK and the mechanism of copper homoeostasis in general.

Full Text

The Full Text of this article is available as a PDF (216.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Camakaris J., Petris M. J., Bailey L., Shen P., Lockhart P., Glover T. W., Barcroft C., Patton J., Mercer J. F. Gene amplification of the Menkes (MNK; ATP7A) P-type ATPase gene of CHO cells is associated with copper resistance and enhanced copper efflux. Hum Mol Genet. 1995 Nov;4(11):2117–2123. doi: 10.1093/hmg/4.11.2117. [DOI] [PubMed] [Google Scholar]
  2. Camakaris J., Voskoboinik I., Mercer J. F. Molecular mechanisms of copper homeostasis. Biochem Biophys Res Commun. 1999 Aug 2;261(2):225–232. doi: 10.1006/bbrc.1999.1073. [DOI] [PubMed] [Google Scholar]
  3. Cobbold Christian, Ponnambalam Sreenivasan, Francis Michael J., Monaco Anthony P. Novel membrane traffic steps regulate the exocytosis of the Menkes disease ATPase. Hum Mol Genet. 2002 Nov 1;11(23):2855–2866. doi: 10.1093/hmg/11.23.2855. [DOI] [PubMed] [Google Scholar]
  4. Dagenais S. L., Adam A. N., Innis J. W., Glover T. W. A novel frameshift mutation in exon 23 of ATP7A (MNK) results in occipital horn syndrome and not in Menkes disease. Am J Hum Genet. 2001 Jun 26;69(2):420–427. doi: 10.1086/321290. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Francis M. J., Jones E. E., Levy E. R., Ponnambalam S., Chelly J., Monaco A. P. A Golgi localization signal identified in the Menkes recombinant protein. Hum Mol Genet. 1998 Aug;7(8):1245–1252. doi: 10.1093/hmg/7.8.1245. [DOI] [PubMed] [Google Scholar]
  6. Garza L. A., Birnbaum M. J. Insulin-responsive aminopeptidase trafficking in 3T3-L1 adipocytes. J Biol Chem. 2000 Jan 28;275(4):2560–2567. doi: 10.1074/jbc.275.4.2560. [DOI] [PubMed] [Google Scholar]
  7. Lane Cinnamon, Petris Michael J., Benmerah Alexandre, Greenough Mark, Camakaris James. Studies on endocytic mechanisms of the Menkes copper-translocating P-type ATPase (ATP7A; MNK). Endocytosis of the Menkes protein. Biometals. 2004 Feb;17(1):87–98. doi: 10.1023/a:1024413631537. [DOI] [PubMed] [Google Scholar]
  8. Li D., Randhawa V. K., Patel N., Hayashi M., Klip A. Hyperosmolarity reduces GLUT4 endocytosis and increases its exocytosis from a VAMP2-independent pool in l6 muscle cells. J Biol Chem. 2001 Apr 10;276(25):22883–22891. doi: 10.1074/jbc.M010143200. [DOI] [PubMed] [Google Scholar]
  9. Mallet W. G., Maxfield F. R. Chimeric forms of furin and TGN38 are transported with the plasma membrane in the trans-Golgi network via distinct endosomal pathways. J Cell Biol. 1999 Jul 26;146(2):345–359. doi: 10.1083/jcb.146.2.345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Petris M. J., Camakaris J., Greenough M., LaFontaine S., Mercer J. F. A C-terminal di-leucine is required for localization of the Menkes protein in the trans-Golgi network. Hum Mol Genet. 1998 Dec;7(13):2063–2071. doi: 10.1093/hmg/7.13.2063. [DOI] [PubMed] [Google Scholar]
  11. Petris M. J., Mercer J. F., Culvenor J. G., Lockhart P., Gleeson P. A., Camakaris J. Ligand-regulated transport of the Menkes copper P-type ATPase efflux pump from the Golgi apparatus to the plasma membrane: a novel mechanism of regulated trafficking. EMBO J. 1996 Nov 15;15(22):6084–6095. [PMC free article] [PubMed] [Google Scholar]
  12. Petris M. J., Mercer J. F. The Menkes protein (ATP7A; MNK) cycles via the plasma membrane both in basal and elevated extracellular copper using a C-terminal di-leucine endocytic signal. Hum Mol Genet. 1999 Oct;8(11):2107–2115. doi: 10.1093/hmg/8.11.2107. [DOI] [PubMed] [Google Scholar]
  13. Petris M. J., Strausak D., Mercer J. F. The Menkes copper transporter is required for the activation of tyrosinase. Hum Mol Genet. 2000 Nov 22;9(19):2845–2851. doi: 10.1093/hmg/9.19.2845. [DOI] [PubMed] [Google Scholar]
  14. Petris Michael J., Voskoboinik Ilia, Cater Michael, Smith Kathryn, Kim Byung-Eun, Llanos Roxana M., Strausak Daniel, Camakaris James, Mercer Julian F. B. Copper-regulated trafficking of the Menkes disease copper ATPase is associated with formation of a phosphorylated catalytic intermediate. J Biol Chem. 2002 Sep 12;277(48):46736–46742. doi: 10.1074/jbc.M208864200. [DOI] [PubMed] [Google Scholar]
  15. Strausak D., La Fontaine S., Hill J., Firth S. D., Lockhart P. J., Mercer J. F. The role of GMXCXXC metal binding sites in the copper-induced redistribution of the Menkes protein. J Biol Chem. 1999 Apr 16;274(16):11170–11177. doi: 10.1074/jbc.274.16.11170. [DOI] [PubMed] [Google Scholar]
  16. Voskoboinik I., Brooks H., Smith S., Shen P., Camakaris J. ATP-dependent copper transport by the Menkes protein in membrane vesicles isolated from cultured Chinese hamster ovary cells. FEBS Lett. 1998 Sep 18;435(2-3):178–182. doi: 10.1016/s0014-5793(98)01059-x. [DOI] [PubMed] [Google Scholar]
  17. Voskoboinik I., Mar J., Camakaris J. Mutational analysis of the Menkes copper P-type ATPase (ATP7A). Biochem Biophys Res Commun. 2003 Feb 7;301(2):488–494. doi: 10.1016/s0006-291x(03)00010-x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES