Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 Mar 15;378(Pt 3):1015–1021. doi: 10.1042/BJ20030847

Palmitoylation is not required for trafficking of human anion exchanger 1 to the cell surface.

Joanne C Cheung 1, Reinhart A F Reithmeier 1
PMCID: PMC1224004  PMID: 14640982

Abstract

AE1 (anion exchanger 1) is a glycoprotein found in the plasma membrane of erythrocytes, where it mediates the electroneutral exchange of chloride and bicarbonate, a process important in CO2 removal from tissues. It had been previously shown that human AE1 purified from erythrocytes is covalently modified at Cys-843 in the membrane domain with palmitic acid. In this study, the role of Cys-843 in human AE1 trafficking was investigated by expressing various AE1 and Cys-843Ala (C843A) mutant constructs in transiently transfected HEK-293 cells. The AE1 C843A mutant was expressed to a similar level to AE1. The rate of N-glycan conversion from high-mannose into complex form in a glycosylation mutant (N555) of AE1 C843A, and thus the rate of trafficking from the endoplasmic reticulum to the Golgi, were comparable with that of AE1 (N555). Like AE1, AE1 C843A could be biotinylated at the cell surface, indicating that a cysteine residue at position 843 is not required for cell-surface expression of the protein. The turnover rate of AE1 C843A was not significantly different from AE1. While other proteins could be palmitoylated, labelling of transiently transfected HEK-293 cells or COS7 cells with [3H]palmitic acid failed to produce any detectable AE1 palmitoylation. These results suggest that AE1 is not palmitoylated in HEK-293 or COS7 cells and can traffic to the plasma membrane.

Full Text

The Full Text of this article is available as a PDF (186.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alvarez E., Gironès N., Davis R. J. Inhibition of the receptor-mediated endocytosis of diferric transferrin is associated with the covalent modification of the transferrin receptor with palmitic acid. J Biol Chem. 1990 Sep 25;265(27):16644–16655. [PubMed] [Google Scholar]
  2. Berthiaume L., Resh M. D. Biochemical characterization of a palmitoyl acyltransferase activity that palmitoylates myristoylated proteins. J Biol Chem. 1995 Sep 22;270(38):22399–22405. doi: 10.1074/jbc.270.38.22399. [DOI] [PubMed] [Google Scholar]
  3. Blanpain C., Wittamer V., Vanderwinden J. M., Boom A., Renneboog B., Lee B., Le Poul E., El Asmar L., Govaerts C., Vassart G. Palmitoylation of CCR5 is critical for receptor trafficking and efficient activation of intracellular signaling pathways. J Biol Chem. 2001 Apr 25;276(26):23795–23804. doi: 10.1074/jbc.M100583200. [DOI] [PubMed] [Google Scholar]
  4. Casey J. R., Ding Y., Kopito R. R. The role of cysteine residues in the erythrocyte plasma membrane anion exchange protein, AE1. J Biol Chem. 1995 Apr 14;270(15):8521–8527. doi: 10.1074/jbc.270.15.8521. [DOI] [PubMed] [Google Scholar]
  5. Chamoun Z., Mann R. K., Nellen D., von Kessler D. P., Bellotto M., Beachy P. A., Basler K. Skinny hedgehog, an acyltransferase required for palmitoylation and activity of the hedgehog signal. Science. 2001 Aug 2;293(5537):2080–2084. doi: 10.1126/science.1064437. [DOI] [PubMed] [Google Scholar]
  6. Das A. K., Dasgupta B., Bhattacharya R., Basu J. Purification and biochemical characterization of a protein-palmitoyl acyltransferase from human erythrocytes. J Biol Chem. 1997 Apr 25;272(17):11021–11025. doi: 10.1074/jbc.272.17.11021. [DOI] [PubMed] [Google Scholar]
  7. Das A. K., Kundu M., Chakrabarti P., Basu J. Fatty acylation of a 55 kDa membrane protein of human erythrocytes. Biochim Biophys Acta. 1992 Jul 27;1108(2):128–132. doi: 10.1016/0005-2736(92)90016-f. [DOI] [PubMed] [Google Scholar]
  8. Duncan J. A., Gilman A. G. Autoacylation of G protein alpha subunits. J Biol Chem. 1996 Sep 20;271(38):23594–23600. doi: 10.1074/jbc.271.38.23594. [DOI] [PubMed] [Google Scholar]
  9. Fujinaga J., Tang X. B., Casey J. R. Topology of the membrane domain of human erythrocyte anion exchange protein, AE1. J Biol Chem. 1999 Mar 5;274(10):6626–6633. doi: 10.1074/jbc.274.10.6626. [DOI] [PubMed] [Google Scholar]
  10. Joseph M., Nagaraj R. Conformations of peptides corresponding to fatty acylation sites in proteins. A circular dichroism study. J Biol Chem. 1995 Aug 18;270(33):19439–19445. doi: 10.1074/jbc.270.33.19439. [DOI] [PubMed] [Google Scholar]
  11. Joseph M., Nagaraj R. Interaction of peptides corresponding to fatty acylation sites in proteins with model membranes. J Biol Chem. 1995 Jul 14;270(28):16749–16755. doi: 10.1074/jbc.270.28.16749. [DOI] [PubMed] [Google Scholar]
  12. Kang D., Karbach D., Passow H. Anion transport function of mouse erythroid band 3 protein (AE1) does not require acylation of cysteine residue 861. Biochim Biophys Acta. 1994 Sep 14;1194(2):341–344. doi: 10.1016/0005-2736(94)90317-4. [DOI] [PubMed] [Google Scholar]
  13. Kasinathan C., Grzelinska E., Okazaki K., Slomiany B. L., Slomiany A. Purification of protein fatty acyltransferase and determination of its distribution and topology. J Biol Chem. 1990 Mar 25;265(9):5139–5144. [PubMed] [Google Scholar]
  14. Kawano Y., Okubo K., Tokunaga F., Miyata T., Iwanaga S., Hamasaki N. Localization of the pyridoxal phosphate binding site at the COOH-terminal region of erythrocyte band 3 protein. J Biol Chem. 1988 Jun 15;263(17):8232–8238. [PubMed] [Google Scholar]
  15. Keenan T. W., Heid H. W., Stadler J., Jarasch E. d., Franke W. W. Tight attachment of fatty acids to proteins associated with milk lipid globule membrane. Eur J Cell Biol. 1982 Feb;26(2):270–276. [PubMed] [Google Scholar]
  16. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  17. Lee H., Woodman S. E., Engelman J. A., Volonté D., Galbiati F., Kaufman H. L., Lublin D. M., Lisanti M. P. Palmitoylation of caveolin-1 at a single site (Cys-156) controls its coupling to the c-Src tyrosine kinase: targeting of dually acylated molecules (GPI-linked, transmembrane, or cytoplasmic) to caveolae effectively uncouples c-Src and caveolin-1 (TYR-14). J Biol Chem. 2001 Jul 12;276(37):35150–35158. doi: 10.1074/jbc.M104530200. [DOI] [PubMed] [Google Scholar]
  18. Leventis R., Juel G., Knudsen J. K., Silvius J. R. Acyl-CoA binding proteins inhibit the nonenzymic S-acylation of cysteinyl-containing peptide sequences by long-chain acyl-CoAs. Biochemistry. 1997 May 6;36(18):5546–5553. doi: 10.1021/bi963029h. [DOI] [PubMed] [Google Scholar]
  19. Li J., Quilty J., Popov M., Reithmeier R. A. Processing of N-linked oligosaccharide depends on its location in the anion exchanger, AE1, membrane glycoprotein. Biochem J. 2000 Jul 1;349(Pt 1):51–57. doi: 10.1042/0264-6021:3490051. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Liu L., Dudler T., Gelb M. H. Purification of a protein palmitoyltransferase that acts on H-Ras protein and on a C-terminal N-Ras peptide. J Biol Chem. 1996 Sep 20;271(38):23269–23276. doi: 10.1074/jbc.271.38.23269. [DOI] [PubMed] [Google Scholar]
  21. Lopata M. A., Cleveland D. W., Sollner-Webb B. High level transient expression of a chloramphenicol acetyl transferase gene by DEAE-dextran mediated DNA transfection coupled with a dimethyl sulfoxide or glycerol shock treatment. Nucleic Acids Res. 1984 Jul 25;12(14):5707–5717. doi: 10.1093/nar/12.14.5707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Maretzki D., Mariani M., Lutz H. U. Fatty acid acylation of membrane skeletal proteins in human erythrocytes. FEBS Lett. 1990 Jan 1;259(2):305–310. doi: 10.1016/0014-5793(90)80033-f. [DOI] [PubMed] [Google Scholar]
  23. May J. M. Thiol-fatty acylation of the glucose transport protein of human erythrocytes. FEBS Lett. 1990 Nov 12;274(1-2):119–121. doi: 10.1016/0014-5793(90)81344-n. [DOI] [PubMed] [Google Scholar]
  24. McLaughlin R. E., Denny J. B. Palmitoylation of GAP-43 by the ER-Golgi intermediate compartment and Golgi apparatus. Biochim Biophys Acta. 1999 Aug 12;1451(1):82–92. doi: 10.1016/s0167-4889(99)00074-9. [DOI] [PubMed] [Google Scholar]
  25. Mollner S., Ferreira P., Beck K., Pfeuffer T. Nonenzymatic palmitoylation at Cys 3 causes extra-activation of the alpha-subunit of the stimulatory GTP-binding protein Gs. Eur J Biochem. 1998 Oct 1;257(1):236–241. doi: 10.1046/j.1432-1327.1998.2570236.x. [DOI] [PubMed] [Google Scholar]
  26. Müller-Berger S., Karbach D., König J., Lepke S., Wood P. G., Appelhans H., Passow H. Inhibition of mouse erythroid band 3-mediated chloride transport by site-directed mutagenesis of histidine residues and its reversal by second site mutation of Lys 558, the locus of covalent H2DIDS binding. Biochemistry. 1995 Jul 25;34(29):9315–9324. doi: 10.1021/bi00029a006. [DOI] [PubMed] [Google Scholar]
  27. O'Brien P. J., St Jules R. S., Reddy T. S., Bazan N. G., Zatz M. Acylation of disc membrane rhodopsin may be nonenzymatic. J Biol Chem. 1987 Apr 15;262(11):5210–5215. [PubMed] [Google Scholar]
  28. O'Dowd B. F., Hnatowich M., Caron M. G., Lefkowitz R. J., Bouvier M. Palmitoylation of the human beta 2-adrenergic receptor. Mutation of Cys341 in the carboxyl tail leads to an uncoupled nonpalmitoylated form of the receptor. J Biol Chem. 1989 May 5;264(13):7564–7569. [PubMed] [Google Scholar]
  29. Okubo K., Hamasaki N., Hara K., Kageura M. Palmitoylation of cysteine 69 from the COOH-terminal of band 3 protein in the human erythrocyte membrane. Acylation occurs in the middle of the consensus sequence of F--I-IICLAVL found in band 3 protein and G2 protein of Rift Valley fever virus. J Biol Chem. 1991 Sep 5;266(25):16420–16424. [PubMed] [Google Scholar]
  30. Ostrer H., Pullarkat R. K., Kazmi M. A. Glycosylation and palmitoylation are not required for the formation of the X-linked cone opsin visual pigments. Mol Vis. 1998 Dec 10;4:28–28. [PubMed] [Google Scholar]
  31. Percherancier Y., Planchenault T., Valenzuela-Fernandez A., Virelizier J. L., Arenzana-Seisdedos F., Bachelerie F. Palmitoylation-dependent control of degradation, life span, and membrane expression of the CCR5 receptor. J Biol Chem. 2001 Jun 4;276(34):31936–31944. doi: 10.1074/jbc.M104013200. [DOI] [PubMed] [Google Scholar]
  32. Pizard A., Blaukat A., Michineau S., Dikic I., Müller-Esterl W., Alhenc-Gelas F., Rajerison R. M. Palmitoylation of the human bradykinin B2 receptor influences ligand efficacy. Biochemistry. 2001 Dec 25;40(51):15743–15751. doi: 10.1021/bi011600t. [DOI] [PubMed] [Google Scholar]
  33. Popov M., Li J., Reithmeier R. A. Transmembrane folding of the human erythrocyte anion exchanger (AE1, Band 3) determined by scanning and insertional N-glycosylation mutagenesis. Biochem J. 1999 Apr 15;339(Pt 2):269–279. [PMC free article] [PubMed] [Google Scholar]
  34. Quilty J. A., Reithmeier R. A. Trafficking and folding defects in hereditary spherocytosis mutants of the human red cell anion exchanger. Traffic. 2000 Dec;1(12):987–998. doi: 10.1034/j.1600-0854.2000.011208.x. [DOI] [PubMed] [Google Scholar]
  35. Quilty Janne A., Cordat Emmanuelle, Reithmeier Reinhart A. F. Impaired trafficking of human kidney anion exchanger (kAE1) caused by hetero-oligomer formation with a truncated mutant associated with distal renal tubular acidosis. Biochem J. 2002 Dec 15;368(Pt 3):895–903. doi: 10.1042/BJ20020574. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Quilty Janne A., Li Jing, Reithmeier Reinhart A. Impaired trafficking of distal renal tubular acidosis mutants of the human kidney anion exchanger kAE1. Am J Physiol Renal Physiol. 2002 May;282(5):F810–F820. doi: 10.1152/ajprenal.00216.2001. [DOI] [PubMed] [Google Scholar]
  37. Reithmeier R. A. A membrane metabolon linking carbonic anhydrase with chloride/bicarbonate anion exchangers. Blood Cells Mol Dis. 2001 Jan-Feb;27(1):85–89. doi: 10.1006/bcmd.2000.0353. [DOI] [PubMed] [Google Scholar]
  38. Resh M. D. Fatty acylation of proteins: new insights into membrane targeting of myristoylated and palmitoylated proteins. Biochim Biophys Acta. 1999 Aug 12;1451(1):1–16. doi: 10.1016/s0167-4889(99)00075-0. [DOI] [PubMed] [Google Scholar]
  39. Salzer U., Prohaska R. Stomatin, flotillin-1, and flotillin-2 are major integral proteins of erythrocyte lipid rafts. Blood. 2001 Feb 15;97(4):1141–1143. doi: 10.1182/blood.v97.4.1141. [DOI] [PubMed] [Google Scholar]
  40. Schmidt M. F. Fatty acylation of proteins. Biochim Biophys Acta. 1989 Dec 6;988(3):411–426. doi: 10.1016/0304-4157(89)90013-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Schweizer A., Kornfeld S., Rohrer J. Cysteine34 of the cytoplasmic tail of the cation-dependent mannose 6-phosphate receptor is reversibly palmitoylated and required for normal trafficking and lysosomal enzyme sorting. J Cell Biol. 1996 Feb;132(4):577–584. doi: 10.1083/jcb.132.4.577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Staufenbiel M. Fatty acids covalently bound to erythrocyte proteins undergo a differential turnover in vivo. J Biol Chem. 1988 Sep 25;263(27):13615–13622. [PubMed] [Google Scholar]
  43. Staufenbiel M., Lazarides E. Ankyrin is fatty acid acylated in erythrocytes. Proc Natl Acad Sci U S A. 1986 Jan;83(2):318–322. doi: 10.1073/pnas.83.2.318. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Sterling D., Reithmeier R. A., Casey J. R. A transport metabolon. Functional interaction of carbonic anhydrase II and chloride/bicarbonate exchangers. J Biol Chem. 2001 Oct 17;276(51):47886–47894. doi: 10.1074/jbc.M105959200. [DOI] [PubMed] [Google Scholar]
  45. Tang X. B., Casey J. R. Trapping of inhibitor-induced conformational changes in the erythrocyte membrane anion exchanger AE1. Biochemistry. 1999 Nov 2;38(44):14565–14572. doi: 10.1021/bi991524i. [DOI] [PubMed] [Google Scholar]
  46. Tang X. B., Fujinaga J., Kopito R., Casey J. R. Topology of the region surrounding Glu681 of human AE1 protein, the erythrocyte anion exchanger. J Biol Chem. 1998 Aug 28;273(35):22545–22553. doi: 10.1074/jbc.273.35.22545. [DOI] [PubMed] [Google Scholar]
  47. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Uittenbogaard A., Smart E. J. Palmitoylation of caveolin-1 is required for cholesterol binding, chaperone complex formation, and rapid transport of cholesterol to caveolae. J Biol Chem. 2000 Aug 18;275(33):25595–25599. doi: 10.1074/jbc.M003401200. [DOI] [PubMed] [Google Scholar]
  49. Veit M., Sachs K., Heckelmann M., Maretzki D., Hofmann K. P., Schmidt M. F. Palmitoylation of rhodopsin with S-protein acyltransferase: enzyme catalyzed reaction versus autocatalytic acylation. Biochim Biophys Acta. 1998 Oct 2;1394(1):90–98. doi: 10.1016/s0005-2760(98)00097-6. [DOI] [PubMed] [Google Scholar]
  50. Vince J. W., Carlsson U., Reithmeier R. A. Localization of the Cl-/HCO3- anion exchanger binding site to the amino-terminal region of carbonic anhydrase II. Biochemistry. 2000 Nov 7;39(44):13344–13349. doi: 10.1021/bi0015111. [DOI] [PubMed] [Google Scholar]
  51. Vince J. W., Reithmeier R. A. Carbonic anhydrase II binds to the carboxyl terminus of human band 3, the erythrocyte C1-/HCO3- exchanger. J Biol Chem. 1998 Oct 23;273(43):28430–28437. doi: 10.1074/jbc.273.43.28430. [DOI] [PubMed] [Google Scholar]
  52. Vince J. W., Reithmeier R. A. Identification of the carbonic anhydrase II binding site in the Cl(-)/HCO(3)(-) anion exchanger AE1. Biochemistry. 2000 May 9;39(18):5527–5533. doi: 10.1021/bi992564p. [DOI] [PubMed] [Google Scholar]
  53. Zdebska E., Antoniewicz J., Kościelak J. Characterization and quantitation of fatty acids covalently bound to erythrocyte membrane proteins: anion transporter contains 1 mol of fatty acid thiol ester. Arch Biochem Biophys. 1989 Aug 15;273(1):223–229. doi: 10.1016/0003-9861(89)90182-3. [DOI] [PubMed] [Google Scholar]
  54. de Vetten M. P., Agre P. The Rh polypeptide is a major fatty acid-acylated erythrocyte membrane protein. J Biol Chem. 1988 Dec 5;263(34):18193–18196. [PubMed] [Google Scholar]
  55. van de Loo J. W., Teuchert M., Pauli I., Plets E., Van de Ven W. J., Creemers J. W. Dynamic palmitoylation of lymphoma proprotein convertase prolongs its half-life, but is not essential for trans-Golgi network localization. Biochem J. 2000 Dec 15;352(Pt 3):827–833. doi: 10.1042/0264-6021:3520827. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES