Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 Mar 15;378(Pt 3):939–947. doi: 10.1042/BJ20030662

Activation of the DNA-binding ability of latent p53 protein by protein kinase C is abolished by protein kinase CK2.

Sárka Pospísilová 1, Václav Brázda 1, Katerina Kucharíková 1, M Gloria Luciani 1, Ted R Hupp 1, Petr Skládal 1, Emil Palecek 1, Borivoj Vojtesek 1
PMCID: PMC1224005  PMID: 14640983

Abstract

p53 is one of the most important regulators of cell proliferation and differentiation and of programmed cell death, triggering growth arrest and/or apoptosis in response to different cellular stress signals. The sequence-specific DNA-binding function of p53 protein can be activated by several different stimuli that modulate the C-terminal domain of this protein. The predominant mechanism of activation of p53 sequence-specific DNA binding is phosphorylation at specific sites. For example, phosphorylation of p53 by PKC (protein kinase C) occurs in undamaged cells, resulting in masking of the epitope recognized by monoclonal antibody PAb421, and presumably promotes steady-state levels of p53 activity in cycling cells. In contrast, phosphorylation by cdk2 (cyclin-dependent kinase 2)/cyclin A and by the protein kinase CK2 are both enhanced in DNA-damaged cells. We determined whether one mechanism to account for this mutually exclusive phosphorylation may be that each phosphorylation event prevents modification by the other kinase. We used non-radioactive electrophoretic mobility shift assays to show that C-terminal phosphorylation of p53 protein by cdk2/cyclin A on Ser315 or by PKC on Ser378 can efficiently stimulate p53 binding to DNA in vitro, as well as binding of the monoclonal antibody Bp53-10, which recognizes residues 371-380 in the C-terminus of p53. Phosphorylation of p53 by CK2 on Ser392 induces its DNA-binding activity to a much lower extent than phosphorylation by cdk2/cyclin A or PKC. In addition, phosphorylation by CK2 strongly inhibits PKC-induced activation of p53 DNA binding, while the activation of p53 by cdk2/cyclin A is not affected by CK2. The presence of CK2-mediated phosphorylation promotes PKC binding to its docking site within the p53 oligomerization domain, but decreases phosphorylation by PKC, suggesting that competition between CK2 and PKC does not rely on the inhibition of PKC-p53 complex formation. These results indicate the crucial role of p53 C-terminal phosphorylation in the regulation of its DNA-binding activity, but also suggest that antagonistic relationships exist between different stress signalling pathways.

Full Text

The Full Text of this article is available as a PDF (229.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson M. E., Woelker B., Reed M., Wang P., Tegtmeyer P. Reciprocal interference between the sequence-specific core and nonspecific C-terminal DNA binding domains of p53: implications for regulation. Mol Cell Biol. 1997 Nov;17(11):6255–6264. doi: 10.1128/mcb.17.11.6255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Appella E. Modulation of p53 function in cellular regulation. Eur J Biochem. 2001 May;268(10):2763–2763. doi: 10.1046/j.1432-1327.2001.02224.x. [DOI] [PubMed] [Google Scholar]
  3. Baudier J., Delphin C., Grunwald D., Khochbin S., Lawrence J. J. Characterization of the tumor suppressor protein p53 as a protein kinase C substrate and a S100b-binding protein. Proc Natl Acad Sci U S A. 1992 Dec 1;89(23):11627–11631. doi: 10.1073/pnas.89.23.11627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bell Stefan, Klein Christian, Müller Lin, Hansen Silke, Buchner Johannes. p53 contains large unstructured regions in its native state. J Mol Biol. 2002 Oct 4;322(5):917–927. doi: 10.1016/s0022-2836(02)00848-3. [DOI] [PubMed] [Google Scholar]
  5. Blaydes J. P., Hupp T. R. DNA damage triggers DRB-resistant phosphorylation of human p53 at the CK2 site. Oncogene. 1998 Aug 27;17(8):1045–1052. doi: 10.1038/sj.onc.1202014. [DOI] [PubMed] [Google Scholar]
  6. Blaydes J. P., Luciani M. G., Pospisilova S., Ball H. M., Vojtesek B., Hupp T. R. Stoichiometric phosphorylation of human p53 at Ser315 stimulates p53-dependent transcription. J Biol Chem. 2000 Nov 14;276(7):4699–4708. doi: 10.1074/jbc.M003485200. [DOI] [PubMed] [Google Scholar]
  7. Brázda V., Paleĉek J., Pospísilová S., Vojtêsek B., Paleĉek E. Specific modulation of p53 binding to consensus sequence within supercoiled DNA by monoclonal antibodies. Biochem Biophys Res Commun. 2000 Jan 27;267(3):934–939. doi: 10.1006/bbrc.1999.2056. [DOI] [PubMed] [Google Scholar]
  8. Bálint E E., Vousden K. H. Activation and activities of the p53 tumour suppressor protein. Br J Cancer. 2001 Dec 14;85(12):1813–1823. doi: 10.1054/bjoc.2001.2128. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chiarugi V., Cinelli M., Magnelli L. Acetylation and phosphorylation of the carboxy-terminal domain of p53: regulative significance. Oncol Res. 1998;10(2):55–57. [PubMed] [Google Scholar]
  10. Craig Ashley, Scott Mary, Burch Lindsay, Smith Graeme, Ball Kathryn, Hupp Ted. Allosteric effects mediate CHK2 phosphorylation of the p53 transactivation domain. EMBO Rep. 2003 Aug;4(8):787–792. doi: 10.1038/sj.embor.embor901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Delphin C., Baudier J. The protein kinase C activator, phorbol ester, cooperates with the wild-type p53 species of Ras-transformed embryo fibroblasts growth arrest. J Biol Chem. 1994 Nov 25;269(47):29579–29587. [PubMed] [Google Scholar]
  12. Delphin C., Huang K. P., Scotto C., Chapel A., Vincon M., Chambaz E., Garin J., Baudier J. The in vitro phosphorylation of p53 by calcium-dependent protein kinase C--characterization of a protein-kinase-C-binding site on p53. Eur J Biochem. 1997 May 1;245(3):684–692. doi: 10.1111/j.1432-1033.1997.t01-1-00684.x. [DOI] [PubMed] [Google Scholar]
  13. Dornan D., Hupp T. R. Inhibition of p53-dependent transcription by BOX-I phospho-peptide mimetics that bind to p300. EMBO Rep. 2001 Feb;2(2):139–144. doi: 10.1093/embo-reports/kve025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Dornan David, Shimizu Harumi, Burch Lindsay, Smith Amanda J., Hupp Ted R. The proline repeat domain of p53 binds directly to the transcriptional coactivator p300 and allosterically controls DNA-dependent acetylation of p53. Mol Cell Biol. 2003 Dec;23(23):8846–8861. doi: 10.1128/MCB.23.23.8846-8861.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Dornan David, Shimizu Harumi, Perkins Neil D., Hupp Ted R. DNA-dependent acetylation of p53 by the transcription coactivator p300. J Biol Chem. 2002 Dec 23;278(15):13431–13441. doi: 10.1074/jbc.M211460200. [DOI] [PubMed] [Google Scholar]
  16. Fiscella M., Zambrano N., Ullrich S. J., Unger T., Lin D., Cho B., Mercer W. E., Anderson C. W., Appella E. The carboxy-terminal serine 392 phosphorylation site of human p53 is not required for wild-type activities. Oncogene. 1994 Nov;9(11):3249–3257. [PubMed] [Google Scholar]
  17. Gu W., Roeder R. G. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell. 1997 Aug 22;90(4):595–606. doi: 10.1016/s0092-8674(00)80521-8. [DOI] [PubMed] [Google Scholar]
  18. Götz C., Scholtes P., Prowald A., Schuster N., Nastainczyk W., Montenarh M. Protein kinase CK2 interacts with a multi-protein binding domain of p53. Mol Cell Biochem. 1999 Jan;191(1-2):111–120. [PubMed] [Google Scholar]
  19. Hao M., Lowy A. M., Kapoor M., Deffie A., Liu G., Lozano G. Mutation of phosphoserine 389 affects p53 function in vivo. J Biol Chem. 1996 Nov 15;271(46):29380–29385. doi: 10.1074/jbc.271.46.29380. [DOI] [PubMed] [Google Scholar]
  20. Hupp T. R., Lane D. P. Allosteric activation of latent p53 tetramers. Curr Biol. 1994 Oct 1;4(10):865–875. doi: 10.1016/s0960-9822(00)00195-0. [DOI] [PubMed] [Google Scholar]
  21. Hupp T. R., Lane D. P. Two distinct signaling pathways activate the latent DNA binding function of p53 in a casein kinase II-independent manner. J Biol Chem. 1995 Jul 28;270(30):18165–18174. doi: 10.1074/jbc.270.30.18165. [DOI] [PubMed] [Google Scholar]
  22. Hupp T. R., Meek D. W., Midgley C. A., Lane D. P. Regulation of the specific DNA binding function of p53. Cell. 1992 Nov 27;71(5):875–886. doi: 10.1016/0092-8674(92)90562-q. [DOI] [PubMed] [Google Scholar]
  23. Hutchins J. R., Hughes M., Clarke P. R. Substrate specificity determinants of the checkpoint protein kinase Chk1. FEBS Lett. 2000 Jan 21;466(1):91–95. doi: 10.1016/s0014-5793(99)01763-9. [DOI] [PubMed] [Google Scholar]
  24. Jagelská Eva, Brázda Václav, Pospisilová Sarka, Vojtesek Borivoj, Palecek Emil. New ELISA technique for analysis of p53 protein/DNA binding properties. J Immunol Methods. 2002 Sep 15;267(2):227–235. doi: 10.1016/s0022-1759(02)00182-5. [DOI] [PubMed] [Google Scholar]
  25. Jayaraman J., Prives C. Activation of p53 sequence-specific DNA binding by short single strands of DNA requires the p53 C-terminus. Cell. 1995 Jun 30;81(7):1021–1029. doi: 10.1016/s0092-8674(05)80007-8. [DOI] [PubMed] [Google Scholar]
  26. Jinks R. N., White R. H., Chamberlain S. C. Dawn, diacylglycerol, calcium, and protein kinase C--the retinal wrecking crew. A signal transduction cascade for rhabdom shedding in the Limulus eye. J Photochem Photobiol B. 1996 Aug;35(1-2):45–52. doi: 10.1016/1011-1344(96)07307-1. [DOI] [PubMed] [Google Scholar]
  27. Ko L. J., Shieh S. Y., Chen X., Jayaraman L., Tamai K., Taya Y., Prives C., Pan Z. Q. p53 is phosphorylated by CDK7-cyclin H in a p36MAT1-dependent manner. Mol Cell Biol. 1997 Dec;17(12):7220–7229. doi: 10.1128/mcb.17.12.7220. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Lakin N. D., Jackson S. P. Regulation of p53 in response to DNA damage. Oncogene. 1999 Dec 13;18(53):7644–7655. doi: 10.1038/sj.onc.1203015. [DOI] [PubMed] [Google Scholar]
  29. Lu H., Fisher R. P., Bailey P., Levine A. J. The CDK7-cycH-p36 complex of transcription factor IIH phosphorylates p53, enhancing its sequence-specific DNA binding activity in vitro. Mol Cell Biol. 1997 Oct;17(10):5923–5934. doi: 10.1128/mcb.17.10.5923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Luciani M. G., Hutchins J. R., Zheleva D., Hupp T. R. The C-terminal regulatory domain of p53 contains a functional docking site for cyclin A. J Mol Biol. 2000 Jul 14;300(3):503–518. doi: 10.1006/jmbi.2000.3830. [DOI] [PubMed] [Google Scholar]
  31. Midgley C. A., Fisher C. J., Bártek J., Vojtesek B., Lane D., Barnes D. M. Analysis of p53 expression in human tumours: an antibody raised against human p53 expressed in Escherichia coli. J Cell Sci. 1992 Jan;101(Pt 1):183–189. doi: 10.1242/jcs.101.1.183. [DOI] [PubMed] [Google Scholar]
  32. Minamoto T., Buschmann T., Habelhah H., Matusevich E., Tahara H., Boerresen-Dale A. L., Harris C., Sidransky D., Ronai Z. Distinct pattern of p53 phosphorylation in human tumors. Oncogene. 2001 Jun 7;20(26):3341–3347. doi: 10.1038/sj.onc.1204458. [DOI] [PubMed] [Google Scholar]
  33. Nichols Nicole Magnasco, Matthews Kathleen Shive. Human p53 phosphorylation mimic, S392E, increases nonspecific DNA affinity and thermal stability. Biochemistry. 2002 Jan 8;41(1):170–178. doi: 10.1021/bi011736r. [DOI] [PubMed] [Google Scholar]
  34. Palecek E., Vlk D., Stanková V., Brázda V., Vojtesek B., Hupp T. R., Schaper A., Jovin T. M. Tumor suppressor protein p53 binds preferentially to supercoiled DNA. Oncogene. 1997 Oct;15(18):2201–2209. doi: 10.1038/sj.onc.1201398. [DOI] [PubMed] [Google Scholar]
  35. Pospísilová S., Brázda V., Amrichová J., Kamermeierová R., Palecek E., Vojtesek B. Precise characterisation of monoclonal antibodies to the C-terminal region of p53 protein using the PEPSCAN ELISA technique and a new non-radioactive gel shift assay. J Immunol Methods. 2000 Apr 3;237(1-2):51–64. doi: 10.1016/s0022-1759(99)00246-x. [DOI] [PubMed] [Google Scholar]
  36. Pospísilová S., Kanková K., Svitáková M., Nenutil R., Vojtesek B. New monoclonal antibodies recognizing p53 protein phosphorylated by casein kinase II at serine 392. Folia Biol (Praha) 2001;47(4):148–151. [PubMed] [Google Scholar]
  37. Punnonen K., Yuspa S. H. Ultraviolet light irradiation increases cellular diacylglycerol and induces translocation of diacylglycerol kinase in murine keratinocytes. J Invest Dermatol. 1992 Aug;99(2):221–226. doi: 10.1111/1523-1747.ep12650445. [DOI] [PubMed] [Google Scholar]
  38. Rodriguez M. S., Dargemont C., Hay R. T. SUMO-1 conjugation in vivo requires both a consensus modification motif and nuclear targeting. J Biol Chem. 2000 Dec 21;276(16):12654–12659. doi: 10.1074/jbc.M009476200. [DOI] [PubMed] [Google Scholar]
  39. Sakaguchi K., Sakamoto H., Lewis M. S., Anderson C. W., Erickson J. W., Appella E., Xie D. Phosphorylation of serine 392 stabilizes the tetramer formation of tumor suppressor protein p53. Biochemistry. 1997 Aug 19;36(33):10117–10124. doi: 10.1021/bi970759w. [DOI] [PubMed] [Google Scholar]
  40. Schuster N., Götz C., Faust M., Schneider E., Prowald A., Jungbluth A., Montenarh M. Wild-type p53 inhibits protein kinase CK2 activity. J Cell Biochem. 2001;81(1):172–183. doi: 10.1002/1097-4644(20010401)81:1<172::aid-jcb1033>3.0.co;2-o. [DOI] [PubMed] [Google Scholar]
  41. Schuster N., Prowald A., Schneider E., Scheidtmann K. H., Montenarh M. Regulation of p53 mediated transactivation by the beta-subunit of protein kinase CK2. FEBS Lett. 1999 Mar 26;447(2-3):160–166. doi: 10.1016/s0014-5793(99)00273-2. [DOI] [PubMed] [Google Scholar]
  42. Selivanova G., Iotsova V., Kiseleva E., Ström M., Bakalkin G., Grafström R. C., Wiman K. G. The single-stranded DNA end binding site of p53 coincides with the C-terminal regulatory region. Nucleic Acids Res. 1996 Sep 15;24(18):3560–3567. doi: 10.1093/nar/24.18.3560. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Shaw P., Freeman J., Bovey R., Iggo R. Regulation of specific DNA binding by p53: evidence for a role for O-glycosylation and charged residues at the carboxy-terminus. Oncogene. 1996 Feb 15;12(4):921–930. [PubMed] [Google Scholar]
  44. Sionov R. V., Haupt Y. The cellular response to p53: the decision between life and death. Oncogene. 1999 Nov 1;18(45):6145–6157. doi: 10.1038/sj.onc.1203130. [DOI] [PubMed] [Google Scholar]
  45. Skouv J., Jensen P. O., Forchhammer J., Larsen J. K., Lund L. R. Tumor-promoting phorbol ester transiently down-modulates the p53 level and blocks the cell cycle. Cell Growth Differ. 1994 Mar;5(3):329–340. [PubMed] [Google Scholar]
  46. Stephen C. W., Helminen P., Lane D. P. Characterisation of epitopes on human p53 using phage-displayed peptide libraries: insights into antibody-peptide interactions. J Mol Biol. 1995 Apr 21;248(1):58–78. doi: 10.1006/jmbi.1995.0202. [DOI] [PubMed] [Google Scholar]
  47. Takenaka I., Morin F., Seizinger B. R., Kley N. Regulation of the sequence-specific DNA binding function of p53 by protein kinase C and protein phosphatases. J Biol Chem. 1995 Mar 10;270(10):5405–5411. doi: 10.1074/jbc.270.10.5405. [DOI] [PubMed] [Google Scholar]
  48. Vogelstein B., Lane D., Levine A. J. Surfing the p53 network. Nature. 2000 Nov 16;408(6810):307–310. doi: 10.1038/35042675. [DOI] [PubMed] [Google Scholar]
  49. Vojtesek B., Bártek J., Midgley C. A., Lane D. P. An immunochemical analysis of the human nuclear phosphoprotein p53. New monoclonal antibodies and epitope mapping using recombinant p53. J Immunol Methods. 1992 Jul 6;151(1-2):237–244. doi: 10.1016/0022-1759(92)90122-a. [DOI] [PubMed] [Google Scholar]
  50. Wallace M., Coates P. J., Wright E. G., Ball K. L. Differential post-translational modification of the tumour suppressor proteins Rb and p53 modulate the rates of radiation-induced apoptosis in vivo. Oncogene. 2001 Jun 21;20(28):3597–3608. doi: 10.1038/sj.onc.1204496. [DOI] [PubMed] [Google Scholar]
  51. Waterman M. J., Stavridi E. S., Waterman J. L., Halazonetis T. D. ATM-dependent activation of p53 involves dephosphorylation and association with 14-3-3 proteins. Nat Genet. 1998 Jun;19(2):175–178. doi: 10.1038/542. [DOI] [PubMed] [Google Scholar]
  52. Yakovleva T., Pramanik A., Kawasaki T., Tan-No K., Gileva I., Lindegren H., Langel U., Ekstrom T. J., Rigler R., Terenius L. p53 Latency. C-terminal domain prevents binding of p53 core to target but not to nonspecific DNA sequences. J Biol Chem. 2001 Feb 23;276(19):15650–15658. doi: 10.1074/jbc.M100482200. [DOI] [PubMed] [Google Scholar]
  53. Youmell M., Park S. J., Basu S., Price B. D. Regulation of the p53 protein by protein kinase C alpha and protein kinase C zeta. Biochem Biophys Res Commun. 1998 Apr 17;245(2):514–518. doi: 10.1006/bbrc.1998.8471. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES