Abstract
Porcine taurochenodeoxycholic acid 6alpha-hydroxylase, cytochrome P450 4A21 (CYP4A21), differs from other members of the CYP4A subfamily in terms of structural features and catalytic activity. CYP4A21 participates in the formation of hyocholic acid, a species-specific primary bile acid in the pig. The CYP4A21 gene was investigated and found to be approx. 13 kb in size and split into 12 exons. The intron-exon organization of the CYP4A21 gene corresponds to that of CYP4A fatty acid hydroxylase genes in other species. Comparison with a genomic segment of a pig CYP4A fatty acid hydroxylase gene ( CYP4A24 ) revealed a sequence identity with CYP4A21 that extends beyond the exons, indicating a common origin by gene duplication. A pronounced sequence identity was found also within the proximal 5'-flanking regions, whereas the patterns of mRNA expression of CYP4A21 and CYP4A fatty acid hydroxylases in pig liver differ. Sequence comparison aiming to elucidate the origin of the unique features of CYP4A21 revealed a region of decreased sequence identity from exon 6 to exon 8, strongly suggesting that gene conversion could have contributed to the evolution of CYP4A21.
Full Text
The Full Text of this article is available as a PDF (187.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Armstrong M. J., Carey M. C. The hydrophobic-hydrophilic balance of bile salts. Inverse correlation between reverse-phase high performance liquid chromatographic mobilities and micellar cholesterol-solubilizing capacities. J Lipid Res. 1982 Jan;23(1):70–80. [PubMed] [Google Scholar]
- Atchison M., Adesnik M. Gene conversion in a cytochrome P-450 gene family. Proc Natl Acad Sci U S A. 1986 Apr;83(8):2300–2304. doi: 10.1073/pnas.83.8.2300. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bellamine Aouatef, Wang Yarong, Waterman Michael R., Gainer James V., 3rd, Dawson Elliot P., Brown Nancy J., Capdevila Jorge H. Characterization of the CYP4A11 gene, a second CYP4A gene in humans. Arch Biochem Biophys. 2003 Jan 1;409(1):221–227. doi: 10.1016/s0003-9861(02)00545-3. [DOI] [PubMed] [Google Scholar]
- Cohen-Solal C., Parquet M., Férézou J., Sérougne C., Lutton C. Effects of hyodeoxycholic acid and alpha-hyocholic acid, two 6 alpha-hydroxylated bile acids, on cholesterol and bile acid metabolism in the hamster. Biochim Biophys Acta. 1995 Jul 13;1257(2):189–197. doi: 10.1016/0005-2760(95)00073-l. [DOI] [PubMed] [Google Scholar]
- Degtyarenko K. N., Archakov A. I. Molecular evolution of P450 superfamily and P450-containing monooxygenase systems. FEBS Lett. 1993 Oct 11;332(1-2):1–8. doi: 10.1016/0014-5793(93)80470-f. [DOI] [PubMed] [Google Scholar]
- Gasser R., Philpot R. M. Primary structures of cytochrome P-450 isozyme 5 from rabbit and rat and regulation of species-dependent expression and induction in lung and liver: identification of cytochrome P-450 gene subfamily IVB. Mol Pharmacol. 1989 May;35(5):617–625. [PubMed] [Google Scholar]
- Gonzalez F. J., Nebert D. W. Evolution of the P450 gene superfamily: animal-plant 'warfare', molecular drive and human genetic differences in drug oxidation. Trends Genet. 1990 Jun;6(6):182–186. doi: 10.1016/0168-9525(90)90174-5. [DOI] [PubMed] [Google Scholar]
- Haslewood G. A. Bile salt evolution. J Lipid Res. 1967 Nov;8(6):535–550. [PubMed] [Google Scholar]
- Henne K. R., Kunze K. L., Zheng Y. M., Christmas P., Soberman R. J., Rettie A. E. Covalent linkage of prosthetic heme to CYP4 family P450 enzymes. Biochemistry. 2001 Oct 30;40(43):12925–12931. doi: 10.1021/bi011171z. [DOI] [PubMed] [Google Scholar]
- Heuman D. M., Hylemon P. B., Vlahcevic Z. R. Regulation of bile acid synthesis. III. Correlation between biliary bile salt hydrophobicity index and the activities of enzymes regulating cholesterol and bile acid synthesis in the rat. J Lipid Res. 1989 Aug;30(8):1161–1171. [PubMed] [Google Scholar]
- Heuman D. M. Quantitative estimation of the hydrophilic-hydrophobic balance of mixed bile salt solutions. J Lipid Res. 1989 May;30(5):719–730. [PubMed] [Google Scholar]
- Hoch U., Ortiz De Montellano P. R. Covalently linked heme in cytochrome p4504a fatty acid hydroxylases. J Biol Chem. 2001 Jan 3;276(14):11339–11346. doi: 10.1074/jbc.M009969200. [DOI] [PubMed] [Google Scholar]
- Hofmann A. F., Roda A. Physicochemical properties of bile acids and their relationship to biological properties: an overview of the problem. J Lipid Res. 1984 Dec 15;25(13):1477–1489. [PubMed] [Google Scholar]
- Kawashima H., Naganuma T., Kusunose E., Kono T., Yasumoto R., Sugimura K., Kishimoto T. Human fatty acid omega-hydroxylase, CYP4A11: determination of complete genomic sequence and characterization of purified recombinant protein. Arch Biochem Biophys. 2000 Jun 15;378(2):333–339. doi: 10.1006/abbi.2000.1831. [DOI] [PubMed] [Google Scholar]
- Kimura S., Hanioka N., Matsunaga E., Gonzalez F. J. The rat clofibrate-inducible CYP4A gene subfamily. I. Complete intron and exon sequence of the CYP4A1 and CYP4A2 genes, unique exon organization, and identification of a conserved 19-bp upstream element. DNA. 1989 Sep;8(7):503–516. doi: 10.1089/dna.1.1989.8.503. [DOI] [PubMed] [Google Scholar]
- LeBrun Laurie A., Hoch Ute, Ortiz de Montellano Paul R. Autocatalytic mechanism and consequences of covalent heme attachment in the cytochrome P4504A family. J Biol Chem. 2002 Jan 30;277(15):12755–12761. doi: 10.1074/jbc.M112155200. [DOI] [PubMed] [Google Scholar]
- Lee J. S., Galvin K. M., Shi Y. Evidence for physical interaction between the zinc-finger transcription factors YY1 and Sp1. Proc Natl Acad Sci U S A. 1993 Jul 1;90(13):6145–6149. doi: 10.1073/pnas.90.13.6145. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lewis D. F., Watson E., Lake B. G. Evolution of the cytochrome P450 superfamily: sequence alignments and pharmacogenetics. Mutat Res. 1998 Jun;410(3):245–270. doi: 10.1016/s1383-5742(97)00040-9. [DOI] [PubMed] [Google Scholar]
- Li H. Gene sequencing. China, Denmark team up to tackle the pig. Science. 2000 Nov 3;290(5493):913–914. doi: 10.1126/science.290.5493.913a. [DOI] [PubMed] [Google Scholar]
- Long M. Evolution of novel genes. Curr Opin Genet Dev. 2001 Dec;11(6):673–680. doi: 10.1016/s0959-437x(00)00252-5. [DOI] [PubMed] [Google Scholar]
- Lundell K., Hansson R., Wikvall K. Cloning and expression of a pig liver taurochenodeoxycholic acid 6alpha-hydroxylase (CYP4A21): a novel member of the CYP4A subfamily. J Biol Chem. 2000 Dec 11;276(13):9606–9612. doi: 10.1074/jbc.M006584200. [DOI] [PubMed] [Google Scholar]
- Lundell Kerstin. Cloning and expression of two novel pig liver and kidney fatty acid hydroxylases [cytochrome P450 (CYP)4A24 and CYP4A25]. Biochem J. 2002 Apr 15;363(Pt 2):297–303. doi: 10.1042/0264-6021:3630297. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lundell Kerstin, Wikvall Kjell. Gene structure of pig sterol 12alpha-hydroxylase (CYP8B1) and expression in fetal liver: comparison with expression of taurochenodeoxycholic acid 6alpha-hydroxylase (CYP4A21). Biochim Biophys Acta. 2003 Nov 15;1634(3):86–96. doi: 10.1016/j.bbalip.2003.09.002. [DOI] [PubMed] [Google Scholar]
- Muerhoff A. S., Griffin K. J., Johnson E. F. Characterization of a rabbit gene encoding a clofibrate-inducible fatty acid omega-hydroxylase: CYP4A6. Arch Biochem Biophys. 1992 Jul;296(1):66–72. doi: 10.1016/0003-9861(92)90545-8. [DOI] [PubMed] [Google Scholar]
- Nebert D. W. Polymorphisms in drug-metabolizing enzymes: what is their clinical relevance and why do they exist? Am J Hum Genet. 1997 Feb;60(2):265–271. [PMC free article] [PubMed] [Google Scholar]
- Okita R. T., Okita J. R. Cytochrome P450 4A fatty acid omega hydroxylases. Curr Drug Metab. 2001 Sep;2(3):265–281. doi: 10.2174/1389200013338423. [DOI] [PubMed] [Google Scholar]
- Palmer C. N., Griffin K. J., Johnson E. F. Rabbit prostaglandin omega-hydroxylase (CYP4A4): gene structure and expression. Arch Biochem Biophys. 1993 Feb 1;300(2):670–676. doi: 10.1006/abbi.1993.1093. [DOI] [PubMed] [Google Scholar]
- Proudfoot Nick J., Furger Andre, Dye Michael J. Integrating mRNA processing with transcription. Cell. 2002 Feb 22;108(4):501–512. doi: 10.1016/s0092-8674(02)00617-7. [DOI] [PubMed] [Google Scholar]
- Savas Uzen, Hsu Mei-Hui, Johnson Eric F. Differential regulation of human CYP4A genes by peroxisome proliferators and dexamethasone. Arch Biochem Biophys. 2003 Jan 1;409(1):212–220. doi: 10.1016/s0003-9861(02)00499-x. [DOI] [PubMed] [Google Scholar]
- Simpson A. E. The cytochrome P450 4 (CYP4) family. Gen Pharmacol. 1997 Mar;28(3):351–359. doi: 10.1016/s0306-3623(96)00246-7. [DOI] [PubMed] [Google Scholar]
- Slansky J. E., Farnham P. J. Transcriptional regulation of the dihydrofolate reductase gene. Bioessays. 1996 Jan;18(1):55–62. doi: 10.1002/bies.950180111. [DOI] [PubMed] [Google Scholar]
- Smale S. T. Transcription initiation from TATA-less promoters within eukaryotic protein-coding genes. Biochim Biophys Acta. 1997 Mar 20;1351(1-2):73–88. doi: 10.1016/s0167-4781(96)00206-0. [DOI] [PubMed] [Google Scholar]
- Walsh J. B. How often do duplicated genes evolve new functions? Genetics. 1995 Jan;139(1):421–428. doi: 10.1093/genetics/139.1.421. [DOI] [PMC free article] [PubMed] [Google Scholar]
