Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 Mar 15;378(Pt 3):1059–1066. doi: 10.1042/BJ20031536

Superactivity and conformational changes on alpha-chymotrypsin upon interfacial binding to cationic micelles.

M Soledad Celej 1, Mariana G D'Andrea 1, Patricia T Campana 1, Gerardo D Fidelio 1, M Lucia Bianconi 1
PMCID: PMC1224008  PMID: 14641111

Abstract

The catalytic behaviour of alpha-CT (alpha-chymotrypsin) is affected by cationic micelles of CTABr (hexadecyltrimethylammonium bromide). The enzyme-micelle interaction leads to an increase in both the V(max) and the affinity for the substrate p -nitrophenyl acetate, indicating higher catalytic efficiency for bound alpha-CT. The bell-shaped profile of alpha-CT activity with increasing CTABr concentrations suggests that the micelle-bound enzyme reacts with the free substrate. Although more active with CTABr micelles, the enzyme stability is essentially the same as observed in buffer only. Enzyme activation is accompanied by changes in alpha-CT conformation. Changes in tertiary structure were observed by the increase in intensity and the red shift in the alpha-CT tryptophan fluorescence spectrum, suggesting the annulment of internal quenching and a more polar location of tryptophan residues. Near-UV CD also indicated the transfer of aromatic residues to a more flexible environment. CTABr micelles also induces an increase in alpha-helix, as seen by far-UV CD and FTIR (Fourier-transform infrared) spectroscopies. The far-UV CD spectrum of alpha-CT shows an increase in the intensity of the positive band at 198 nm and in the negative band at 222 nm, indicating an increased alpha-helical content. This is in agreement with FTIR studies, where an increase in the band at 1655 cm(-1), corresponding to the alpha-helix, was shown by fitting analysis and difference spectroscopy. Spectral deconvolution indicated a reduction in the beta-sheet content in micelle-bound alpha-CT. Our data suggest that the higher catalytic efficiency of micelle-bound alpha-CT results from significant conformational changes.

Full Text

The Full Text of this article is available as a PDF (140.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Almeida F. C., Valente A. P., Chaimovich H. Stability and activity modulation of chymotrypsins in AOT reversed micelles by protein-interface interaction: interaction of alpha-chymotrypsin with a negative interface leads to a cooperative breakage of a salt bridge that keeps the catalytic active conformation (Ile16-Asp194). Biotechnol Bioeng. 1998 Aug 5;59(3):360–363. doi: 10.1002/(sici)1097-0290(19980805)59:3<360::aid-bit12>3.0.co;2-i. [DOI] [PubMed] [Google Scholar]
  2. Arrondo J. L., Castresana J., Valpuesta J. M., Goñi F. M. Structure and thermal denaturation of crystalline and noncrystalline cytochrome oxidase as studied by infrared spectroscopy. Biochemistry. 1994 Sep 27;33(38):11650–11655. doi: 10.1021/bi00204a029. [DOI] [PubMed] [Google Scholar]
  3. Arrondo J. L., Muga A., Castresana J., Goñi F. M. Quantitative studies of the structure of proteins in solution by Fourier-transform infrared spectroscopy. Prog Biophys Mol Biol. 1993;59(1):23–56. doi: 10.1016/0079-6107(93)90006-6. [DOI] [PubMed] [Google Scholar]
  4. Barth Andreas, Zscherp Christian. What vibrations tell us about proteins. Q Rev Biophys. 2002 Nov;35(4):369–430. doi: 10.1017/s0033583502003815. [DOI] [PubMed] [Google Scholar]
  5. Byler D. M., Susi H. Examination of the secondary structure of proteins by deconvolved FTIR spectra. Biopolymers. 1986 Mar;25(3):469–487. doi: 10.1002/bip.360250307. [DOI] [PubMed] [Google Scholar]
  6. Fasman G. D., Foster R. J., Beychok S. The conformational transition associated with the activation of chymotrypsinogen to chymotrypsin. J Mol Biol. 1966 Aug;19(2):240–253. doi: 10.1016/s0022-2836(66)80002-5. [DOI] [PubMed] [Google Scholar]
  7. Gebicka L., Gebicki J. L. Interaction of sodium bis(2-ethylhexyl) sulfosuccinate (AOT) with catalase and horseradish peroxidase in an aqueous solution and in the reverse micelles of AOT/N-heptane. Biochem Mol Biol Int. 1998 Jul;45(4):805–811. [PubMed] [Google Scholar]
  8. Goormaghtigh E., Cabiaux V., Ruysschaert J. M. Determination of soluble and membrane protein structure by Fourier transform infrared spectroscopy. III. Secondary structures. Subcell Biochem. 1994;23:405–450. doi: 10.1007/978-1-4615-1863-1_10. [DOI] [PubMed] [Google Scholar]
  9. Guerra R., Bianconi M. L. Increased stability and catalytic efficiency of yeast hexokinase upon interaction with zwitterionic micelles. Kinetics and conformational studies. Biosci Rep. 2000 Feb;20(1):41–49. doi: 10.1023/a:1005583117296. [DOI] [PubMed] [Google Scholar]
  10. Kelly S. M., Price N. C. The application of circular dichroism to studies of protein folding and unfolding. Biochim Biophys Acta. 1997 Apr 4;1338(2):161–185. doi: 10.1016/s0167-4838(96)00190-2. [DOI] [PubMed] [Google Scholar]
  11. Laane C., Hilhorst R., Veeger C. Design of reversed micellar media for the enzymatic synthesis of apolar compounds. Methods Enzymol. 1987;136:216–229. doi: 10.1016/s0076-6879(87)36022-7. [DOI] [PubMed] [Google Scholar]
  12. Lalitha J., Mulimani V. H. Stability and activity of potato acid phosphatase in aqueous surfactant media. Biochem Mol Biol Int. 1997 Apr;41(4):797–803. doi: 10.1080/15216549700201831. [DOI] [PubMed] [Google Scholar]
  13. Lindman B., Wennerström H. Miceles. Amphiphile aggregation in aqueous solution. Top Curr Chem. 1980;87:1–87. [PubMed] [Google Scholar]
  14. Martinek K., Klyachko N. L., Kabanov A. V., Khmelnitsky YuL, Levashov A. V. The second E.C. Slater lecture. Micellar enzymology: its relation to membranology. Biochim Biophys Acta. 1989 Jun 6;981(2):161–172. doi: 10.1016/0005-2736(89)90024-2. [DOI] [PubMed] [Google Scholar]
  15. Martinek K., Levashov A. V., Khmelnitsky Y. L., Klyachko N. L., Berezin I. V. Colloidal solution of water in organic solvents: a microheterogeneous medium for enzymatic reactions. Science. 1982 Nov 26;218(4575):889–891. doi: 10.1126/science.6753152. [DOI] [PubMed] [Google Scholar]
  16. Minton A. P. The influence of macromolecular crowding and macromolecular confinement on biochemical reactions in physiological media. J Biol Chem. 2001 Feb 15;276(14):10577–10580. doi: 10.1074/jbc.R100005200. [DOI] [PubMed] [Google Scholar]
  17. Montich G. G. Partly folded states of bovine carbonic anhydrase interact with zwitterionic and anionic lipid membranes. Biochim Biophys Acta. 2000 Sep 29;1468(1-2):115–126. doi: 10.1016/s0005-2736(00)00250-9. [DOI] [PubMed] [Google Scholar]
  18. Muga A., Surewicz W. K., Wong P. T., Mantsch H. H. Structural studies with the uveopathogenic peptide M derived from retinal S-antigen. Biochemistry. 1990 Mar 27;29(12):2925–2930. doi: 10.1021/bi00464a006. [DOI] [PubMed] [Google Scholar]
  19. Oliveira A. G., Cuccovia I. M., Chaimovich H. Micellar modification of drug stability: analysis of the effect of hexadecyltrimethylammonium halides on the rate of degradation of cephaclor. J Pharm Sci. 1990 Jan;79(1):37–42. doi: 10.1002/jps.2600790110. [DOI] [PubMed] [Google Scholar]
  20. Provencher S. W., Glöckner J. Estimation of globular protein secondary structure from circular dichroism. Biochemistry. 1981 Jan 6;20(1):33–37. doi: 10.1021/bi00504a006. [DOI] [PubMed] [Google Scholar]
  21. Rariy R. V., Bec N., Klyachko N. L., Levashov A. V., Balny C. Thermobarostability of alpha-chymotrypsin in reversed micelles of aerosol OT in octane solvated by water-glycerol mixtures. Biotechnol Bioeng. 1998 Mar 5;57(5):552–556. doi: 10.1002/(sici)1097-0290(19980305)57:5<552::aid-bit7>3.0.co;2-f. [DOI] [PubMed] [Google Scholar]
  22. Sepulveda L., Lissi E., Quina F. Interactions of neutral molecules with ionic micelles. Adv Colloid Interface Sci. 1986 Jun;25(1):1–57. doi: 10.1016/0001-8686(86)80001-x. [DOI] [PubMed] [Google Scholar]
  23. Simon L. M., Kotormán M., Garab G., Laczkó I. Effects of polyhydroxy compounds on the structure and activity of alpha-chymotrypsin. Biochem Biophys Res Commun. 2002 Apr 26;293(1):416–420. doi: 10.1016/S0006-291X(02)00246-2. [DOI] [PubMed] [Google Scholar]
  24. Simon L. M., Kotormán M., Garab G., Laczkó I. Structure and activity of alpha-chymotrypsin and trypsin in aqueous organic media. Biochem Biophys Res Commun. 2001 Feb 9;280(5):1367–1371. doi: 10.1006/bbrc.2001.4282. [DOI] [PubMed] [Google Scholar]
  25. Spreti N., Di Profio P., Marte L., Bufali S., Brinchi L., Savelli G. Activation and stabilization of alpha-chymotrypsin by cationic additives. Eur J Biochem. 2001 Dec;268(24):6491–6497. doi: 10.1046/j.0014-2956.2001.02604.x. [DOI] [PubMed] [Google Scholar]
  26. Sreerama N., Woody R. W. A self-consistent method for the analysis of protein secondary structure from circular dichroism. Anal Biochem. 1993 Feb 15;209(1):32–44. doi: 10.1006/abio.1993.1079. [DOI] [PubMed] [Google Scholar]
  27. Sreerama Narasimha, Woody Robert W. Structural composition of betaI- and betaII-proteins. Protein Sci. 2003 Feb;12(2):384–388. doi: 10.1110/ps.0235003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Surewicz W. K., Mantsch H. H., Chapman D. Determination of protein secondary structure by Fourier transform infrared spectroscopy: a critical assessment. Biochemistry. 1993 Jan 19;32(2):389–394. doi: 10.1021/bi00053a001. [DOI] [PubMed] [Google Scholar]
  29. Tsukada H., Blow D. M. Structure of alpha-chymotrypsin refined at 1.68 A resolution. J Mol Biol. 1985 Aug 20;184(4):703–711. doi: 10.1016/0022-2836(85)90314-6. [DOI] [PubMed] [Google Scholar]
  30. Verkman Alan S. Solute and macromolecule diffusion in cellular aqueous compartments. Trends Biochem Sci. 2002 Jan;27(1):27–33. doi: 10.1016/s0968-0004(01)02003-5. [DOI] [PubMed] [Google Scholar]
  31. Viparelli P., Alfani F., Cantarella M. Models for enzyme superactivity in aqueous solutions of surfactants. Biochem J. 1999 Dec 15;344(Pt 3):765–773. [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES