Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 Mar 15;378(Pt 3):991–998. doi: 10.1042/BJ20031228

Substitutions in hamster CAD carbamoyl-phosphate synthetase alter allosteric response to 5-phosphoribosyl-alpha-pyrophosphate (PRPP) and UTP.

Christine Q Simmons 1, Alan J Simmons 1, Aaron Haubner 1, Amber Ream 1, Jeffrey N Davidson 1
PMCID: PMC1224011  PMID: 14651476

Abstract

CPSase (carbamoyl-phosphate synthetase II), a component of CAD protein (multienzymic protein with CPSase, aspartate transcarbamylase and dihydro-orotase activities), catalyses the regulated steps in the de novo synthesis of pyrimidines. Unlike the orthologous Escherichia coli enzyme that is regulated by UMP, inosine monophosphate and ornithine, the mammalian CPSase is allosterically inhibited by UTP, and activated by PRPP (5-phosphoribosyl-a-pyrophosphate) and phosphorylation. Four residues (Thr974, Lys993, Lys954 and Thr977) are critical to the E. coli inosine monophosphate/UMP-binding pocket. In the present study, three of the corresponding residues in the hamster CPSase were altered to determine if they affect either PRPP activation or UTP inhibition. Substitution of the hamster residue, positionally equivalent to Thr974 in the E. coli enzyme, with alanine residue led to an enzyme with 5-fold lower activity and a near loss of PRPP activation. Whereas replacement of the tryptophan residue at position 993 had no effect, an Asp992-->Asn substitution yielded a much-activated enzyme that behaved as if PRPP was present. The substitution Lys954-->Glu had no effect on PRPP stimulation. Only modest decreases in UTP inhibitions were observed with each of the altered CPSases. The results also show that while PRPP and UTP can act simultaneously, PRPP activation is dominant. Apparently, UTP and PRPP have distinctly different associations within the mammalian enzyme. The findings of the present study may prove relevant to the neuropathology of Lesch-Nyhan syndrome

Full Text

The Full Text of this article is available as a PDF (222.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson P. M., Marvin S. V. Effect of allosteric effectors and adenosine triphosphate on the aggregation and rate of inhibition by N-ethylmaleimide of carbamyl phosphate synthetase of Escherichia coli. Biochemistry. 1970 Jan 6;9(1):171–178. doi: 10.1021/bi00803a022. [DOI] [PubMed] [Google Scholar]
  2. Anderson P. M., Meister A. Control of Escherichia coli carbamyl phosphate synthetase by purine and pyrimidine nucleotides. Biochemistry. 1966 Oct;5(10):3164–3169. doi: 10.1021/bi00874a013. [DOI] [PubMed] [Google Scholar]
  3. Banerjei L. C., Davidson J. N. Site-directed substitution of Ser1406 of hamster CAD with glutamic acid alters allosteric regulation of carbamyl phosphate synthetase II. Somat Cell Mol Genet. 1997 Jan;23(1):37–49. doi: 10.1007/BF02679954. [DOI] [PubMed] [Google Scholar]
  4. Boettcher B., Meister A. Regulation of Escherichia coli carbamyl phosphate synthetase. Evidence for overlap of the allosteric nucleotide binding sites. J Biol Chem. 1982 Dec 10;257(23):13971–13976. [PubMed] [Google Scholar]
  5. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  6. Braxton B. L., Mullins L. S., Raushel F. M., Reinhart G. D. Quantifying the allosteric properties of Escherichia coli carbamyl phosphate synthetase: determination of thermodynamic linked-function parameters in an ordered kinetic mechanism. Biochemistry. 1992 Mar 3;31(8):2309–2316. doi: 10.1021/bi00123a015. [DOI] [PubMed] [Google Scholar]
  7. Bueso J., Cervera J., Fresquet V., Marina A., Lusty C. J., Rubio V. Photoaffinity labeling with the activator IMP and site-directed mutagenesis of histidine 995 of carbamoyl phosphate synthetase from Escherichia coli demonstrate that the binding site for IMP overlaps with that for the inhibitor UMP. Biochemistry. 1999 Mar 30;38(13):3910–3917. doi: 10.1021/bi982871f. [DOI] [PubMed] [Google Scholar]
  8. Cervera J., Bendala E., Britton H. G., Bueso J., Nassif Z., Lusty C. J., Rubio V. Photoaffinity labeling with UMP of lysine 992 of carbamyl phosphate synthetase from Escherichia coli allows identification of the binding site for the pyrimidine inhibitor. Biochemistry. 1996 Jun 4;35(22):7247–7255. doi: 10.1021/bi952549u. [DOI] [PubMed] [Google Scholar]
  9. Coleman P. F., Suttle D. P., Stark G. R. Purification from hamster cells of the multifunctional protein that initiates de novo synthesis of pyrimidine nucleotides. J Biol Chem. 1977 Sep 25;252(18):6379–6385. [PubMed] [Google Scholar]
  10. Czerwinski R. M., Mareya S. M., Raushel F. M. Regulatory changes in the control of carbamoyl phosphate synthetase induced by truncation and mutagenesis of the allosteric binding domain. Biochemistry. 1995 Oct 24;34(42):13920–13927. doi: 10.1021/bi00042a025. [DOI] [PubMed] [Google Scholar]
  11. Davidson J. N., Jamison R. S. Expressing enzymatic domains of hamster CAD in CAD-deficient Chinese hamster ovary cells. Adv Exp Med Biol. 1994;370:591–595. doi: 10.1007/978-1-4615-2584-4_123. [DOI] [PubMed] [Google Scholar]
  12. Davidson J. N., Patterson D. Alteration in structure of multifunctional protein from Chinese hamster ovary cells defective in pyrimidine biosynthesis. Proc Natl Acad Sci U S A. 1979 Apr;76(4):1731–1735. doi: 10.1073/pnas.76.4.1731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Delannay S., Charlier D., Tricot C., Villeret V., Piérard A., Stalon V. Serine 948 and threonine 1042 are crucial residues for allosteric regulation of Escherichia coli carbamoylphosphate synthetase and illustrate coupling effects of activation and inhibition pathways. J Mol Biol. 1999 Mar 5;286(4):1217–1228. doi: 10.1006/jmbi.1999.2561. [DOI] [PubMed] [Google Scholar]
  14. Fresquet V., Mora P., Rochera L., Ramón-Maiques S., Rubio V., Cervera J. Site-directed mutagenesis of the regulatory domain of Escherichia coli carbamoyl phosphate synthetase identifies crucial residues for allosteric regulation and for transduction of the regulatory signals. J Mol Biol. 2000 Jun 16;299(4):979–991. doi: 10.1006/jmbi.2000.3794. [DOI] [PubMed] [Google Scholar]
  15. Graves L. M., Guy H. I., Kozlowski P., Huang M., Lazarowski E., Pope R. M., Collins M. A., Dahlstrand E. N., Earp H. S., 3rd, Evans D. R. Regulation of carbamoyl phosphate synthetase by MAP kinase. Nature. 2000 Jan 20;403(6767):328–332. doi: 10.1038/35002111. [DOI] [PubMed] [Google Scholar]
  16. Guillou F., Rubino S. D., Markovitz R. S., Kinney D. M., Lusty C. J. Escherichia coli carbamoyl-phosphate synthetase: domains of glutaminase and synthetase subunit interaction. Proc Natl Acad Sci U S A. 1989 Nov;86(21):8304–8308. doi: 10.1073/pnas.86.21.8304. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ho S. N., Hunt H. D., Horton R. M., Pullen J. K., Pease L. R. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene. 1989 Apr 15;77(1):51–59. doi: 10.1016/0378-1119(89)90358-2. [DOI] [PubMed] [Google Scholar]
  18. Irvine H. S., Shaw S. M., Paton A., Carrey E. A. A reciprocal allosteric mechanism for efficient transfer of labile intermediates between active sites in CAD, the mammalian pyrimidine-biosynthetic multienzyme polypeptide. Eur J Biochem. 1997 Aug 1;247(3):1063–1073. doi: 10.1111/j.1432-1033.1997.01063.x. [DOI] [PubMed] [Google Scholar]
  19. Liu X., Guy H. I., Evans D. R. Identification of the regulatory domain of the mammalian multifunctional protein CAD by the construction of an Escherichia coli hamster hybrid carbamyl-phosphate synthetase. J Biol Chem. 1994 Nov 4;269(44):27747–27755. [PubMed] [Google Scholar]
  20. Mora P., Rubio V., Fresquet V., Cervera J. Localization of the site for the nucleotide effectors of Escherichia coli carbamoyl phosphate synthetase using site-directed mutagenesis. FEBS Lett. 1999 Mar 5;446(1):133–136. doi: 10.1016/s0014-5793(99)00197-0. [DOI] [PubMed] [Google Scholar]
  21. Mori M., Tatibana M. Purification of homogeneous glutamine-dependent carbamyl phosphate synthetase from ascites hepatoma cells as a complex with aspartate transcarbamylase and dihydroorotase. J Biochem. 1975 Jul;78(1):239–242. [PubMed] [Google Scholar]
  22. Pelled D., Sperling O., Zoref-Shani E. Abnormal purine and pyrimidine nucleotide content in primary astroglia cultures from hypoxanthine-guanine phosphoribosyltransferase-deficient transgenic mice. J Neurochem. 1999 Mar;72(3):1139–1145. doi: 10.1046/j.1471-4159.1999.0721139.x. [DOI] [PubMed] [Google Scholar]
  23. Pierrat Olivier A., Raushel Frank M. A functional analysis of the allosteric nucleotide monophosphate binding site of carbamoyl phosphate synthetase. Arch Biochem Biophys. 2002 Apr 1;400(1):34–42. doi: 10.1006/abbi.2002.2767. [DOI] [PubMed] [Google Scholar]
  24. Piérard A. Control of the activity of Escherichia coli carbamoyl phosphate synthetase by antagonistic allosteric effectors. Science. 1966 Dec 23;154(3756):1572–1573. doi: 10.1126/science.154.3756.1572. [DOI] [PubMed] [Google Scholar]
  25. Qiu Y., Davidson J. N. Substitutions in the aspartate transcarbamoylase domain of hamster CAD disrupt oligomeric structure. Proc Natl Acad Sci U S A. 2000 Jan 4;97(1):97–102. doi: 10.1073/pnas.97.1.97. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Rubio V., Cervera J., Lusty C. J., Bendala E., Britton H. G. Domain structure of the large subunit of Escherichia coli carbamoyl phosphate synthetase. Location of the binding site for the allosteric inhibitor UMP in the COOH-terminal domain. Biochemistry. 1991 Jan 29;30(4):1068–1075. doi: 10.1021/bi00218a027. [DOI] [PubMed] [Google Scholar]
  27. Sahay N., Guy H. I., Liu X., Evans D. R. Regulation of an Escherichia coli/mammalian chimeric carbamoyl-phosphate synthetase. J Biol Chem. 1998 Nov 20;273(47):31195–31202. doi: 10.1074/jbc.273.47.31195. [DOI] [PubMed] [Google Scholar]
  28. Shaw S. M., Carrey E. A. Regulation of the mammalian carbamoyl-phosphate synthetase II by effectors and phosphorylation. Altered affinity for ATP and magnesium ions measured using the ammonia-dependent part reaction. Eur J Biochem. 1992 Aug 1;207(3):957–965. doi: 10.1111/j.1432-1033.1992.tb17130.x. [DOI] [PubMed] [Google Scholar]
  29. Shoaf W. T., Jones M. E. Uridylic acid synthesis in Ehrlich ascites carcinoma. Properties, subcellular distribution, and nature of enzyme complexes of the six biosynthetic enzymes. Biochemistry. 1973 Oct 9;12(21):4039–4051. doi: 10.1021/bi00745a004. [DOI] [PubMed] [Google Scholar]
  30. Sigoillot Frederic D., Evans David R., Guy Hedeel I. Autophosphorylation of the mammalian multifunctional protein that initiates de novo pyrimidine biosynthesis. J Biol Chem. 2002 May 1;277(27):24809–24817. doi: 10.1074/jbc.M203512200. [DOI] [PubMed] [Google Scholar]
  31. Simmons A. J., Rawls J. M., Piskur J., Davidson J. N. A mutation that uncouples allosteric regulation of carbamyl phosphate synthetase in Drosophila. J Mol Biol. 1999 Mar 26;287(2):277–285. doi: 10.1006/jmbi.1999.2618. [DOI] [PubMed] [Google Scholar]
  32. Thoden J. B., Holden H. M., Wesenberg G., Raushel F. M., Rayment I. Structure of carbamoyl phosphate synthetase: a journey of 96 A from substrate to product. Biochemistry. 1997 May 27;36(21):6305–6316. doi: 10.1021/bi970503q. [DOI] [PubMed] [Google Scholar]
  33. Thoden J. B., Raushel F. M., Wesenberg G., Holden H. M. The binding of inosine monophosphate to Escherichia coli carbamoyl phosphate synthetase. J Biol Chem. 1999 Aug 6;274(32):22502–22507. doi: 10.1074/jbc.274.32.22502. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES