Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 Mar 15;378(Pt 3):1073–1077. doi: 10.1042/BJ20030971

Regulation of glycogen metabolism in cultured human muscles by the glycogen phosphorylase inhibitor CP-91149.

Carlos Lerín 1, Eulàlia Montell 1, Teresa Nolasco 1, Mar García-Rocha 1, Joan J Guinovart 1, Anna M Gómez-Foix 1
PMCID: PMC1224012  PMID: 14651477

Abstract

Pharmacological inhibition of liver GP (glycogen phosphorylase), which is currently being studied as a treatment for Type II (non-insulin-dependent) diabetes, may affect muscle glycogen metabolism. In the present study, we analysed the effects of the GP inhibitor CP-91149 on non-engineered or GP-overexpressing cultured human muscle cells. We found that CP-91149 treatment decreased muscle GP activity by (1) converting the phosphorylated AMP-independent a form into the dephosphorylated AMP-dependent b form and (2) inhibiting GP a activity and AMP-mediated GP b activation. Dephosphorylation of GP was exerted, irrespective of incubation of the cells with glucose, whereas inhibition of its activity was synergic with glucose. As expected, CP-91149 impaired the glycogenolysis induced by glucose deprivation. CP-91149 also promoted the dephosphorylation and activation of GS (glycogen synthase) in non-engineered or GP-overexpressing cultured human muscle cells, but exclusively in glucose-deprived cells. However, this inhibitor did not activate GS in glucose-deprived but glycogen-replete cells overexpressing PTG (protein targeting to glycogen), thus suggesting that glycogen inhibits the CP-91149-mediated activation of GS. Consistently, CP-91149 promoted glycogen resynthesis, but not its overaccumulation. Hence, treatment with CP-91149 impairs muscle glycogen breakdown, but enhances its recovery, which may be useful for the treatment of Type II (insulin-dependent) diabetes.

Full Text

The Full Text of this article is available as a PDF (141.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aiston S., Hampson L., Gómez-Foix A. M., Guinovart J. J., Agius L. Hepatic glycogen synthesis is highly sensitive to phosphorylase activity: evidence from metabolic control analysis. J Biol Chem. 2001 Apr 17;276(26):23858–23866. doi: 10.1074/jbc.M101454200. [DOI] [PubMed] [Google Scholar]
  2. Alemany S., Cohen P. Phosphorylase a is an allosteric inhibitor of the glycogen and microsomal forms of rat hepatic protein phosphatase-1. FEBS Lett. 1986 Mar 31;198(2):194–202. doi: 10.1016/0014-5793(86)80404-5. [DOI] [PubMed] [Google Scholar]
  3. Armstrong C. G., Doherty M. J., Cohen P. T. Identification of the separate domains in the hepatic glycogen-targeting subunit of protein phosphatase 1 that interact with phosphorylase a, glycogen and protein phosphatase 1. Biochem J. 1998 Dec 15;336(Pt 3):699–704. doi: 10.1042/bj3360699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Berman H. K., O'Doherty R. M., Anderson P., Newgard C. B. Overexpression of protein targeting to glycogen (PTG) in rat hepatocytes causes profound activation of glycogen synthesis independent of normal hormone- and substrate-mediated regulatory mechanisms. J Biol Chem. 1998 Oct 9;273(41):26421–26425. doi: 10.1074/jbc.273.41.26421. [DOI] [PubMed] [Google Scholar]
  5. Bloch G., Chase J. R., Meyer D. B., Avison M. J., Shulman G. I., Shulman R. G. In vivo regulation of rat muscle glycogen resynthesis after intense exercise. Am J Physiol. 1994 Jan;266(1 Pt 1):E85–E91. doi: 10.1152/ajpendo.1994.266.1.E85. [DOI] [PubMed] [Google Scholar]
  6. Buchbinder J. L., Fletterick R. J. Role of the active site gate of glycogen phosphorylase in allosteric inhibition and substrate binding. J Biol Chem. 1996 Sep 13;271(37):22305–22309. doi: 10.1074/jbc.271.37.22305. [DOI] [PubMed] [Google Scholar]
  7. Gasa R., Jensen P. B., Berman H. K., Brady M. J., DePaoli-Roach A. A., Newgard C. B. Distinctive regulatory and metabolic properties of glycogen-targeting subunits of protein phosphatase-1 (PTG, GL, GM/RGl) expressed in hepatocytes. J Biol Chem. 2000 Aug 25;275(34):26396–26403. doi: 10.1074/jbc.M002427200. [DOI] [PubMed] [Google Scholar]
  8. Gilboe D. P., Larson K. L., Nuttall F. Q. Radioactive method for the assay of glycogen phosphorylases. Anal Biochem. 1972 May;47(1):20–27. doi: 10.1016/0003-2697(72)90274-6. [DOI] [PubMed] [Google Scholar]
  9. Gomis Roger R., Cid Emili, García-Rocha Mar, Ferrer Juan C., Guinovart Joan J. Liver glycogen synthase but not the muscle isoform differentiates between glucose 6-phosphate produced by glucokinase or hexokinase. J Biol Chem. 2002 Mar 6;277(26):23246–23252. doi: 10.1074/jbc.M111208200. [DOI] [PubMed] [Google Scholar]
  10. Gómez-Foix A. M., Coats W. S., Baqué S., Alam T., Gerard R. D., Newgard C. B. Adenovirus-mediated transfer of the muscle glycogen phosphorylase gene into hepatocytes confers altered regulation of glycogen metabolism. J Biol Chem. 1992 Dec 15;267(35):25129–25134. [PubMed] [Google Scholar]
  11. Halse Reza, Fryer Lee G. D., McCormack James G., Carling David, Yeaman Stephen J. Regulation of glycogen synthase by glucose and glycogen: a possible role for AMP-activated protein kinase. Diabetes. 2003 Jan;52(1):9–15. doi: 10.2337/diabetes.52.1.9. [DOI] [PubMed] [Google Scholar]
  12. Hoover D. J., Lefkowitz-Snow S., Burgess-Henry J. L., Martin W. H., Armento S. J., Stock I. A., McPherson R. K., Genereux P. E., Gibbs E. M., Treadway J. L. Indole-2-carboxamide inhibitors of human liver glycogen phosphorylase. J Med Chem. 1998 Jul 30;41(16):2934–2938. doi: 10.1021/jm980264k. [DOI] [PubMed] [Google Scholar]
  13. Lerín C., Montell E., Berman H. K., Newgard C. B., Gómez-Foix A. M. Overexpression of protein targeting to glycogen in cultured human muscle cells stimulates glycogen synthesis independent of glycogen and glucose 6-phosphate levels. J Biol Chem. 2000 Dec 22;275(51):39991–39995. doi: 10.1074/jbc.M006251200. [DOI] [PubMed] [Google Scholar]
  14. Martin W. H., Hoover D. J., Armento S. J., Stock I. A., McPherson R. K., Danley D. E., Stevenson R. W., Barrett E. J., Treadway J. L. Discovery of a human liver glycogen phosphorylase inhibitor that lowers blood glucose in vivo. Proc Natl Acad Sci U S A. 1998 Feb 17;95(4):1776–1781. doi: 10.1073/pnas.95.4.1776. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Montell E., Arias A., Gómez-Foix A. M. Glycogen depletion rather than glucose 6-P increments controls early glycogen recovery in human cultured muscle. Am J Physiol. 1999 May;276(5 Pt 2):R1489–R1495. doi: 10.1152/ajpregu.1999.276.5.R1489. [DOI] [PubMed] [Google Scholar]
  16. Munro Shonagh, Cuthbertson Daniel J. R., Cunningham Joan, Sales Mark, Cohen Patricia T. W. Human skeletal muscle expresses a glycogen-targeting subunit of PP1 that is identical to the insulin-sensitive glycogen-targeting subunit G(L) of liver. Diabetes. 2002 Mar;51(3):591–598. doi: 10.2337/diabetes.51.3.591. [DOI] [PubMed] [Google Scholar]
  17. Mvumbi L., Doperé F., Stalmans W. The inhibitory effect of phosphorylase a on the activation of glycogen synthase depends on the type of synthase phosphatase. Biochem J. 1983 May 15;212(2):407–416. doi: 10.1042/bj2120407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Newgard C. B., Hwang P. K., Fletterick R. J. The family of glycogen phosphorylases: structure and function. Crit Rev Biochem Mol Biol. 1989;24(1):69–99. doi: 10.3109/10409238909082552. [DOI] [PubMed] [Google Scholar]
  19. Sprang S. R., Withers S. G., Goldsmith E. J., Fletterick R. J., Madsen N. B. Structural basis for the activation of glycogen phosphorylase b by adenosine monophosphate. Science. 1991 Nov 29;254(5036):1367–1371. doi: 10.1126/science.1962195. [DOI] [PubMed] [Google Scholar]
  20. Stalmans W., De Wulf H., Hue L., Hers H. G. The sequential inactivation of glycogen phosphorylase and activation of glycogen synthetase in liver after the administration of glucose to mice and rats. The mechanism of the hepatic threshold to glucose. Eur J Biochem. 1974 Jan 3;41(1):127–134. doi: 10.1111/j.1432-1033.1974.tb03252.x. [DOI] [PubMed] [Google Scholar]
  21. Thomas J. A., Schlender K. K., Larner J. A rapid filter paper assay for UDPglucose-glycogen glucosyltransferase, including an improved biosynthesis of UDP-14C-glucose. Anal Biochem. 1968 Oct 24;25(1):486–499. doi: 10.1016/0003-2697(68)90127-9. [DOI] [PubMed] [Google Scholar]
  22. Treadway J. L., Mendys P., Hoover D. J. Glycogen phosphorylase inhibitors for treatment of type 2 diabetes mellitus. Expert Opin Investig Drugs. 2001 Mar;10(3):439–454. doi: 10.1517/13543784.10.3.439. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES