Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 Mar 15;378(Pt 3):889–898. doi: 10.1042/BJ20031572

Plant sterol biosynthesis: identification of two distinct families of sterol 4alpha-methyl oxidases.

Sylvain Darnet 1, Alain Rahier 1
PMCID: PMC1224014  PMID: 14653780

Abstract

In plants, the conversion of cycloartenol into functional phytosterols requires the removal of the two methyl groups at C-4 by an enzymic complex including a sterol 4alpha-methyl oxidase (SMO). We report the cloning of candidate genes for SMOs in Arabidopsis thaliana, belonging to two distinct families termed SMO1 and SMO2 and containing three and two isoforms respectively. SMO1 and SMO2 shared low sequence identity with each other and were orthologous to the ERG25 gene from Saccharomyces cerevisiae which encodes the SMO. The plant SMO amino acid sequences possess all the three histidine-rich motifs (HX3H, HX2HH and HX2HH), characteristic of the small family of membrane-bound non-haem iron oxygenases that are involved in lipid oxidation. To elucidate the precise functions of SMO1 and SMO2 gene families, we have reduced their expression by using a VIGS (virus-induced gene silencing) approach in Nicotiana benthamiana. SMO1 and SMO2 cDNA fragments were inserted into a viral vector and N. benthamiana inoculated with the viral transcripts. After silencing with SMO1, a substantial accumulation of 4,4-dimethyl-9beta,19-cyclopropylsterols (i.e. 24-methylenecycloartanol) was obtained, whereas qualitative and quantitative levels of 4alpha-methylsterols were not affected. In the case of silencing with SMO2, a large accumulation of 4alpha-methyl-Delta7-sterols (i.e. 24-ethylidenelophenol and 24-ethyllophenol) was found, with no change in the levels of 4,4-dimethylsterols. These clear and distinct biochemical phenotypes demonstrate that, in contrast with animals and fungi, in photosynthetic eukaryotes, these two novel families of cDNAs are coding two distinct types of C-4-methylsterol oxidases controlling the level of 4,4-dimethylsterol and 4alpha-methylsterol precursors respectively.

Full Text

The Full Text of this article is available as a PDF (238.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bach T. J., Benveniste P. Cloning of cDNAs or genes encoding enzymes of sterol biosynthesis from plants and other eukaryotes: heterologous expression and complementation analysis of mutations for functional characterization. Prog Lipid Res. 1997 Sep;36(2-3):197–226. doi: 10.1016/s0163-7827(97)00009-x. [DOI] [PubMed] [Google Scholar]
  2. Bard M., Bruner D. A., Pierson C. A., Lees N. D., Biermann B., Frye L., Koegel C., Barbuch R. Cloning and characterization of ERG25, the Saccharomyces cerevisiae gene encoding C-4 sterol methyl oxidase. Proc Natl Acad Sci U S A. 1996 Jan 9;93(1):186–190. doi: 10.1073/pnas.93.1.186. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baulcombe D. C. Fast forward genetics based on virus-induced gene silencing. Curr Opin Plant Biol. 1999 Apr;2(2):109–113. doi: 10.1016/S1369-5266(99)80022-3. [DOI] [PubMed] [Google Scholar]
  4. Bishop G. J., Yokota T. Plants steroid hormones, brassinosteroids: current highlights of molecular aspects on their synthesis/metabolism, transport, perception and response. Plant Cell Physiol. 2001 Feb;42(2):114–120. doi: 10.1093/pcp/pce018. [DOI] [PubMed] [Google Scholar]
  5. Bloch K. E. Sterol structure and membrane function. CRC Crit Rev Biochem. 1983;14(1):47–92. doi: 10.3109/10409238309102790. [DOI] [PubMed] [Google Scholar]
  6. Choe S., Dilkes B. P., Gregory B. D., Ross A. S., Yuan H., Noguchi T., Fujioka S., Takatsuto S., Tanaka A., Yoshida S. The Arabidopsis dwarf1 mutant is defective in the conversion of 24-methylenecholesterol to campesterol in brassinosteroid biosynthesis. Plant Physiol. 1999 Mar;119(3):897–907. doi: 10.1104/pp.119.3.897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Choe S., Noguchi T., Fujioka S., Takatsuto S., Tissier C. P., Gregory B. D., Ross A. S., Tanaka A., Yoshida S., Tax F. E. The Arabidopsis dwf7/ste1 mutant is defective in the delta7 sterol C-5 desaturation step leading to brassinosteroid biosynthesis. Plant Cell. 1999 Feb;11(2):207–221. [PMC free article] [PubMed] [Google Scholar]
  8. Clouse Steven D. Arabidopsis mutants reveal multiple roles for sterols in plant development. Plant Cell. 2002 Sep;14(9):1995–2000. doi: 10.1105/tpc.140930. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Darnet S., Bard M., Rahier A. Functional identification of sterol-4alpha-methyl oxidase cDNAs from Arabidopsis thaliana by complementation of a yeast erg25 mutant lacking sterol-4alpha-methyl oxidation. FEBS Lett. 2001 Nov 9;508(1):39–43. doi: 10.1016/s0014-5793(01)03002-2. [DOI] [PubMed] [Google Scholar]
  10. Darnet Sylvain, Rahier Alain. Enzymological properties of sterol-C4-methyl-oxidase of yeast sterol biosynthesis. Biochim Biophys Acta. 2003 Jul 21;1633(2):106–117. doi: 10.1016/s1388-1981(03)00093-3. [DOI] [PubMed] [Google Scholar]
  11. Gachotte D., Husselstein T., Bard M., Lacroute F., Benveniste P. Isolation and characterization of an Arabidopsis thaliana cDNA encoding a delta 7-sterol-C-5-desaturase by functional complementation of a defective yeast mutant. Plant J. 1996 Mar;9(3):391–398. doi: 10.1046/j.1365-313x.1996.09030391.x. [DOI] [PubMed] [Google Scholar]
  12. Gietz D., St Jean A., Woods R. A., Schiestl R. H. Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res. 1992 Mar 25;20(6):1425–1425. doi: 10.1093/nar/20.6.1425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hanley B. A., Schuler M. A. Plant intron sequences: evidence for distinct groups of introns. Nucleic Acids Res. 1988 Jul 25;16(14B):7159–7176. doi: 10.1093/nar/16.14.7159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jang J. C., Fujioka S., Tasaka M., Seto H., Takatsuto S., Ishii A., Aida M., Yoshida S., Sheen J. A critical role of sterols in embryonic patterning and meristem programming revealed by the fackel mutants of Arabidopsis thaliana. Genes Dev. 2000 Jun 15;14(12):1485–1497. [PMC free article] [PubMed] [Google Scholar]
  15. Kumagai M. H., Donson J., della-Cioppa G., Harvey D., Hanley K., Grill L. K. Cytoplasmic inhibition of carotenoid biosynthesis with virus-derived RNA. Proc Natl Acad Sci U S A. 1995 Feb 28;92(5):1679–1683. doi: 10.1073/pnas.92.5.1679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kumagai M. H., Keller Y., Bouvier F., Clary D., Camara B. Functional integration of non-native carotenoids into chloroplasts by viral-derived expression of capsanthin-capsorubin synthase in Nicotiana benthamiana. Plant J. 1998 May;14(3):305–315. doi: 10.1046/j.1365-313x.1998.00128.x. [DOI] [PubMed] [Google Scholar]
  17. Lee M., Lenman M., Banaś A., Bafor M., Singh S., Schweizer M., Nilsson R., Liljenberg C., Dahlqvist A., Gummeson P. O. Identification of non-heme diiron proteins that catalyze triple bond and epoxy group formation. Science. 1998 May 8;280(5365):915–918. doi: 10.1126/science.280.5365.915. [DOI] [PubMed] [Google Scholar]
  18. Moniz de Sá M., Drouin G. Phylogeny and substitution rates of angiosperm actin genes. Mol Biol Evol. 1996 Nov;13(9):1198–1212. doi: 10.1093/oxfordjournals.molbev.a025685. [DOI] [PubMed] [Google Scholar]
  19. Pascal S., Taton M., Rahier A. Plant sterol biosynthesis. Identification and characterization of two distinct microsomal oxidative enzymatic systems involved in sterol C4-demethylation. J Biol Chem. 1993 Jun 5;268(16):11639–11654. [PubMed] [Google Scholar]
  20. Pascal S., Taton M., Rahier A. Plant sterol biosynthesis: identification of a NADPH dependent sterone reductase involved in sterol-4 demethylation. Arch Biochem Biophys. 1994 Jul;312(1):260–271. doi: 10.1006/abbi.1994.1308. [DOI] [PubMed] [Google Scholar]
  21. Rahier A., Génot J. C., Schuber F., Benveniste P., Narula A. S. Inhibition of S-adenosyl-L-methionine sterol-C-24-methyltransferase by analogues of a carbocationic ion high-energy intermediate. Structure activity relationships for C-25 heteroatoms (N, As, S) substituted triterpenoid derivatives. J Biol Chem. 1984 Dec 25;259(24):15215–15223. [PubMed] [Google Scholar]
  22. Rondet S., Taton M., Rahier A. Identification, characterization, and partial purification of 4 alpha-carboxysterol-C3-dehydrogenase/ C4-decarboxylase from Zea mays. Arch Biochem Biophys. 1999 Jun 15;366(2):249–260. doi: 10.1006/abbi.1999.1218. [DOI] [PubMed] [Google Scholar]
  23. Ruiz MT, Voinnet O, Baulcombe DC. Initiation and maintenance of virus-induced gene silencing . Plant Cell. 1998 Jun;10(6):937–946. doi: 10.1105/tpc.10.6.937. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Schaeffer A., Bronner R., Benveniste P., Schaller H. The ratio of campesterol to sitosterol that modulates growth in Arabidopsis is controlled by STEROL METHYLTRANSFERASE 2;1. Plant J. 2001 Mar;25(6):605–615. doi: 10.1046/j.1365-313x.2001.00994.x. [DOI] [PubMed] [Google Scholar]
  25. Schrick K., Mayer U., Horrichs A., Kuhnt C., Bellini C., Dangl J., Schmidt J., Jürgens G. FACKEL is a sterol C-14 reductase required for organized cell division and expansion in Arabidopsis embryogenesis. Genes Dev. 2000 Jun 15;14(12):1471–1484. [PMC free article] [PubMed] [Google Scholar]
  26. Schrick Kathrin, Mayer Ulrike, Martin Gottfried, Bellini Catherine, Kuhnt Christine, Schmidt Jürgen, Jürgens Gerd. Interactions between sterol biosynthesis genes in embryonic development of Arabidopsis. Plant J. 2002 Jul;31(1):61–73. doi: 10.1046/j.1365-313x.2002.01333.x. [DOI] [PubMed] [Google Scholar]
  27. Shanklin John, Cahoon Edgar B. DESATURATION AND RELATED MODIFICATIONS OF FATTY ACIDS1. Annu Rev Plant Physiol Plant Mol Biol. 1998 Jun;49(NaN):611–641. doi: 10.1146/annurev.arplant.49.1.611. [DOI] [PubMed] [Google Scholar]
  28. Sperling P., Ternes P., Moll H., Franke S., Zähringer U., Heinz E. Functional characterization of sphingolipid C4-hydroxylase genes from Arabidopsis thaliana. FEBS Lett. 2001 Apr 6;494(1-2):90–94. doi: 10.1016/s0014-5793(01)02332-8. [DOI] [PubMed] [Google Scholar]
  29. Taton M., Husselstein T., Benveniste P., Rahier A. Role of highly conserved residues in the reaction catalyzed by recombinant Delta7-sterol-C5(6)-desaturase studied by site-directed mutagenesis. Biochemistry. 2000 Feb 1;39(4):701–711. doi: 10.1021/bi991467t. [DOI] [PubMed] [Google Scholar]
  30. Vernet T., Dignard D., Thomas D. Y. A family of yeast expression vectors containing the phage f1 intergenic region. Gene. 1987;52(2-3):225–233. doi: 10.1016/0378-1119(87)90049-7. [DOI] [PubMed] [Google Scholar]
  31. Wang Ming-Bo, Waterhouse Peter M. Application of gene silencing in plants. Curr Opin Plant Biol. 2002 Apr;5(2):146–150. doi: 10.1016/s1369-5266(02)00236-4. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES