Abstract
In the present study, we report on the molecular cloning and functional characterization of mouse NaCT (Na+-coupled citrate transporter), the mouse orthologue of Drosophila Indy. Mouse NaCT consists of 572 amino acids and is highly similar to rat and human NaCTs in primary sequence. The mouse nact gene coding for the transporter is approx. 23 kb long and consists of 12 exons. When expressed in mammalian cells, the cloned transporter mediates the Na+-coupled transport of citrate and succinate. Competition experiments reveal that mouse NaCT also recognizes other tricarboxylic acid cycle intermediates such as malate, fumarate and 2-oxo-glutarate as excellent substrates. The Michaelis-Menten constant for the transport process is 38+/-5 mM for citrate and 37+/-6 mM for succinate at pH 7.5. The transport process is electrogenic and exhibits an obligatory requirement for Na+. Na+-activation kinetics indicates that multiple Na+ ions are involved in the activation process. Extracellular pH has a differential effect on the transport function of mouse NaCT depending on whether the transported substrate is citrate or succinate. The Michaelis-Menten constants for these substrates are also influenced markedly by pH. When examined in the Xenopus laevis oocyte expression system with the two-microelectrode voltage-clamp technique, the transport process mediated by mouse NaCT is electrogenic. The charge-to-substrate ratio is 1 for citrate and 2 for succinate. The most probable transport mechanism predicted by these studies involves the transport of citrate as a tervalent anion and succinate as a bivalent anion with a fixed Na+/substrate stoichiometry of 4:1. The present study provides the first unequivocal evidence for the electrogenic nature of mammalian NaCT.
Full Text
The Full Text of this article is available as a PDF (255.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Fei Y. J., Nara E., Liu J. C., Boyd C. A., Ganapathy V., Leibach F. H. Preferential recognition of zwitterionic dipeptides as transportable substrates by the high-affinity peptide transporter PEPT2. Biochim Biophys Acta. 1999 May 12;1418(2):344–351. doi: 10.1016/s0005-2736(99)00046-2. [DOI] [PubMed] [Google Scholar]
- Hatanaka T., Nakanishi T., Huang W., Leibach F. H., Prasad P. D., Ganapathy V., Ganapathy M. E. Na+ - and Cl- -coupled active transport of nitric oxide synthase inhibitors via amino acid transport system B(0,+). J Clin Invest. 2001 Apr;107(8):1035–1043. doi: 10.1172/JCI12060. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Helfand S. L., Rogina B. Regulation of gene expression during aging. Results Probl Cell Differ. 2000;29:67–80. doi: 10.1007/978-3-540-48003-7_4. [DOI] [PubMed] [Google Scholar]
- Helfand Stephen L., Rogina Blanka. From genes to aging in Drosophila. Adv Genet. 2003;49:67–109. doi: 10.1016/s0065-2660(03)01002-2. [DOI] [PubMed] [Google Scholar]
- Inoue Katsuhisa, Fei You-Jun, Huang Wei, Zhuang Lina, Chen Zhong, Ganapathy Vadivel. Functional identity of Drosophila melanogaster Indy as a cation-independent, electroneutral transporter for tricarboxylic acid-cycle intermediates. Biochem J. 2002 Oct 15;367(Pt 2):313–319. doi: 10.1042/BJ20021132. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Inoue Katsuhisa, Zhuang Lina, Ganapathy Vadivel. Human Na+ -coupled citrate transporter: primary structure, genomic organization, and transport function. Biochem Biophys Res Commun. 2002 Dec 6;299(3):465–471. doi: 10.1016/s0006-291x(02)02669-4. [DOI] [PubMed] [Google Scholar]
- Inoue Katsuhisa, Zhuang Lina, Maddox Dennis M., Smith Sylvia B., Ganapathy Vadivel. Human sodium-coupled citrate transporter, the orthologue of Drosophila Indy, as a novel target for lithium action. Biochem J. 2003 Aug 15;374(Pt 1):21–26. doi: 10.1042/BJ20030827. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Inoue Katsuhisa, Zhuang Lina, Maddox Dennis M., Smith Sylvia B., Ganapathy Vadivel. Structure, function, and expression pattern of a novel sodium-coupled citrate transporter (NaCT) cloned from mammalian brain. J Biol Chem. 2002 Aug 11;277(42):39469–39476. doi: 10.1074/jbc.M207072200. [DOI] [PubMed] [Google Scholar]
- Kekuda R., Wang H., Huang W., Pajor A. M., Leibach F. H., Devoe L. D., Prasad P. D., Ganapathy V. Primary structure and functional characteristics of a mammalian sodium-coupled high affinity dicarboxylate transporter. J Biol Chem. 1999 Feb 5;274(6):3422–3429. doi: 10.1074/jbc.274.6.3422. [DOI] [PubMed] [Google Scholar]
- Knauf Felix, Rogina Blanka, Jiang Zhirong, Aronson Peter S., Helfand Stephen L. Functional characterization and immunolocalization of the transporter encoded by the life-extending gene Indy. Proc Natl Acad Sci U S A. 2002 Oct 21;99(22):14315–14319. doi: 10.1073/pnas.222531899. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liman E. R., Tytgat J., Hess P. Subunit stoichiometry of a mammalian K+ channel determined by construction of multimeric cDNAs. Neuron. 1992 Nov;9(5):861–871. doi: 10.1016/0896-6273(92)90239-a. [DOI] [PubMed] [Google Scholar]
- Nakanishi T., Hatanaka T., Huang W., Prasad P. D., Leibach F. H., Ganapathy M. E., Ganapathy V. Na+- and Cl--coupled active transport of carnitine by the amino acid transporter ATB(0,+) from mouse colon expressed in HRPE cells and Xenopus oocytes. J Physiol. 2001 Apr 15;532(Pt 2):297–304. doi: 10.1111/j.1469-7793.2001.0297f.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pajor A. M., Gangula R., Yao X. Cloning and functional characterization of a high-affinity Na(+)/dicarboxylate cotransporter from mouse brain. Am J Physiol Cell Physiol. 2001 May;280(5):C1215–C1223. doi: 10.1152/ajpcell.2001.280.5.C1215. [DOI] [PubMed] [Google Scholar]
- Pajor A. M. Molecular properties of sodium/dicarboxylate cotransporters. J Membr Biol. 2000 May 1;175(1):1–8. doi: 10.1007/s002320001049. [DOI] [PubMed] [Google Scholar]
- Pajor A. M. Sodium-coupled transporters for Krebs cycle intermediates. Annu Rev Physiol. 1999;61:663–682. doi: 10.1146/annurev.physiol.61.1.663. [DOI] [PubMed] [Google Scholar]
- Pajor A. M., Sun N. N. Molecular cloning, chromosomal organization, and functional characterization of a sodium-dicarboxylate cotransporter from mouse kidney. Am J Physiol Renal Physiol. 2000 Sep;279(3):F482–F490. doi: 10.1152/ajprenal.2000.279.3.F482. [DOI] [PubMed] [Google Scholar]
- Rogina B., Reenan R. A., Nilsen S. P., Helfand S. L. Extended life-span conferred by cotransporter gene mutations in Drosophila. Science. 2000 Dec 15;290(5499):2137–2140. doi: 10.1126/science.290.5499.2137. [DOI] [PubMed] [Google Scholar]
- Seth P., Wu X., Huang W., Leibach F. H., Ganapathy V. Mutations in novel organic cation transporter (OCTN2), an organic cation/carnitine transporter, with differential effects on the organic cation transport function and the carnitine transport function. J Biol Chem. 1999 Nov 19;274(47):33388–33392. doi: 10.1074/jbc.274.47.33388. [DOI] [PubMed] [Google Scholar]
- Sohal R. S., Weindruch R. Oxidative stress, caloric restriction, and aging. Science. 1996 Jul 5;273(5271):59–63. doi: 10.1126/science.273.5271.59. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Trudeau M. C., Warmke J. W., Ganetzky B., Robertson G. A. HERG, a human inward rectifier in the voltage-gated potassium channel family. Science. 1995 Jul 7;269(5220):92–95. doi: 10.1126/science.7604285. [DOI] [PubMed] [Google Scholar]
- Wang H., Fei Y. J., Kekuda R., Yang-Feng T. L., Devoe L. D., Leibach F. H., Prasad P. D., Ganapathy V. Structure, function, and genomic organization of human Na(+)-dependent high-affinity dicarboxylate transporter. Am J Physiol Cell Physiol. 2000 May;278(5):C1019–C1030. doi: 10.1152/ajpcell.2000.278.5.C1019. [DOI] [PubMed] [Google Scholar]