Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 Mar 15;378(Pt 3):851–856. doi: 10.1042/BJ20031239

Functional refolding of the Campylobacter jejuni MOMP (major outer membrane protein) porin by GroEL from the same species.

Florence Goulhen 1, Emmanuelle Dé 1, Jean-Marie Pagès 1, Jean-Michel Bolla 1
PMCID: PMC1224022  PMID: 14662009

Abstract

Functional and structural studies of outer membrane proteins from Gram-negative bacteria are frequently carried out using refolded proteins. Recombinant proteins are produced in Escherichia coli as inclusion bodies and then tediously refolded by dilution in buffered detergent solutions. In the present work, we obtained the refolding of MOMP (major outer membrane protein) from Campylobacter assisted by the molecular chaperone GroEL. Refolded MOMP recovered its native pore-forming activity when reconstituted in planar lipid bilayers. Both proteins were purified from the Campylobacter jejuni strain 85H. The purity of GroEL was assessed by silver staining and MS. Its native ultrastructure was observed by the use of transmission electron microscopy. Denaturation of MOMP was performed in urea at 65 degrees C followed by dialysis against 100 mM acetic acid, and was assessed by CD analysis. MOMP refolding reached a maximum efficiency in the presence of GroEL (at a MOMP/GroEL molar ratio of 9:1) and ATP. Under these conditions, 95% of denatured MOMP was refolded after a 15 min incubation. This approach represents an alternative method in studies of membrane protein refolding.

Full Text

The Full Text of this article is available as a PDF (136.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bolla J. M., Lazdunski C., Pagès J. M. The assembly of the major outer membrane protein OmpF of Escherichia coli depends on lipid synthesis. EMBO J. 1988 Nov;7(11):3595–3599. doi: 10.1002/j.1460-2075.1988.tb03237.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bolla J. M., Loret E., Zalewski M., Pagés J. M. Conformational analysis of the Campylobacter jejuni porin. J Bacteriol. 1995 Aug;177(15):4266–4271. doi: 10.1128/jb.177.15.4266-4271.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Buchanan S. K. Beta-barrel proteins from bacterial outer membranes: structure, function and refolding. Curr Opin Struct Biol. 1999 Aug;9(4):455–461. doi: 10.1016/S0959-440X(99)80064-5. [DOI] [PubMed] [Google Scholar]
  4. Buckle A. M., Zahn R., Fersht A. R. A structural model for GroEL-polypeptide recognition. Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):3571–3575. doi: 10.1073/pnas.94.8.3571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Conlan Sean, Bayley Hagan. Folding of a monomeric porin, OmpG, in detergent solution. Biochemistry. 2003 Aug 12;42(31):9453–9465. doi: 10.1021/bi0344228. [DOI] [PubMed] [Google Scholar]
  6. Dé E., Jullien M., Labesse G., Pagès J. M., Molle G., Bolla J. M. MOMP (major outer membrane protein) of Campylobacter jejuni; a versatile pore-forming protein. FEBS Lett. 2000 Mar 3;469(1):93–97. doi: 10.1016/s0014-5793(00)01244-8. [DOI] [PubMed] [Google Scholar]
  7. Eisele J. L., Rosenbusch J. P. In vitro folding and oligomerization of a membrane protein. Transition of bacterial porin from random coil to native conformation. J Biol Chem. 1990 Jun 25;265(18):10217–10220. [PubMed] [Google Scholar]
  8. Fayet O., Ziegelhoffer T., Georgopoulos C. The groES and groEL heat shock gene products of Escherichia coli are essential for bacterial growth at all temperatures. J Bacteriol. 1989 Mar;171(3):1379–1385. doi: 10.1128/jb.171.3.1379-1385.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Flynn G. C., Beckers C. J., Baase W. A., Dahlquist F. W. Individual subunits of bacterial luciferase are molten globules and interact with molecular chaperones. Proc Natl Acad Sci U S A. 1993 Nov 15;90(22):10826–10830. doi: 10.1073/pnas.90.22.10826. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Guagliardi A., Cerchia L., Bartolucci S., Rossi M. The chaperonin from the archaeon Sulfolobus solfataricus promotes correct refolding and prevents thermal denaturation in vitro. Protein Sci. 1994 Sep;3(9):1436–1443. doi: 10.1002/pro.5560030910. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Guise A. D., Chaudhuri J. B. Recovery and reuse of the molecular chaperone GroEL for in vitro protein refolding. Biotechnol Prog. 1998 Mar-Apr;14(2):343–346. doi: 10.1021/bp970125g. [DOI] [PubMed] [Google Scholar]
  12. Houry W. A., Frishman D., Eckerskorn C., Lottspeich F., Hartl F. U. Identification of in vivo substrates of the chaperonin GroEL. Nature. 1999 Nov 11;402(6758):147–154. doi: 10.1038/45977. [DOI] [PubMed] [Google Scholar]
  13. Kelle K., Pagés J. M., Bolla J. M. A putative adhesin gene cloned from Campylobacter jejuni. Res Microbiol. 1998 Nov-Dec;149(10):723–733. doi: 10.1016/s0923-2508(99)80019-9. [DOI] [PubMed] [Google Scholar]
  14. Khan R. H., Khan F. Models for protein folding and nature's choice of protein as catalyst. Biochemistry (Mosc) 2002 May;67(5):520–524. doi: 10.1023/a:1015537909889. [DOI] [PubMed] [Google Scholar]
  15. Kubo T., Mizobata T., Kawata Y. Refolding of yeast enolase in the presence of the chaperonin GroE. The nucleotide specificity of GroE and the role of GroES. J Biol Chem. 1993 Sep 15;268(26):19346–19351. [PubMed] [Google Scholar]
  16. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  17. Li S., Wang L. T., Zhou H. M. SDS-induced conformational changes and inactivation of the bacterial chaperonin GroEL. J Protein Chem. 1999 Aug;18(6):653–657. doi: 10.1023/a:1020650105969. [DOI] [PubMed] [Google Scholar]
  18. Mendoza J. A., Warren T., Dulin P. The ATPase activity of chaperonin GroEL is highly stimulated at elevated temperatures. Biochem Biophys Res Commun. 1996 Dec 4;229(1):271–274. doi: 10.1006/bbrc.1996.1791. [DOI] [PubMed] [Google Scholar]
  19. Mizobata T., Kawagoe M., Hongo K., Nagai J., Kawata Y. Refolding of target proteins from a "rigid" mutant chaperonin demonstrates a minimal mechanism of chaperonin binding and release. J Biol Chem. 2000 Aug 18;275(33):25600–25607. doi: 10.1074/jbc.M000795200. [DOI] [PubMed] [Google Scholar]
  20. Montal M., Mueller P. Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties. Proc Natl Acad Sci U S A. 1972 Dec;69(12):3561–3566. doi: 10.1073/pnas.69.12.3561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Parkhill J., Wren B. W., Mungall K., Ketley J. M., Churcher C., Basham D., Chillingworth T., Davies R. M., Feltwell T., Holroyd S. The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature. 2000 Feb 10;403(6770):665–668. doi: 10.1038/35001088. [DOI] [PubMed] [Google Scholar]
  22. Rijpkema S. G. Prospects for therapeutic Helicobacter pylori vaccines. J Med Microbiol. 1999 Jan;48(1):1–3. doi: 10.1099/00222615-48-1-1. [DOI] [PubMed] [Google Scholar]
  23. Rosenbusch J. P. Characterization of the major envelope protein from Escherichia coli. Regular arrangement on the peptidoglycan and unusual dodecyl sulfate binding. J Biol Chem. 1974 Dec 25;249(24):8019–8029. [PubMed] [Google Scholar]
  24. Sagane Yoshimasa, Hasegawa Kimiko, Mutoh Shingo, Kouguchi Hirokazu, Suzuki Tomonori, Sunagawa Hiroyuki, Nakagawa Tomoyuki, Kamaguchi Arihide, Okasaki Shinn, Nakayama Kenji. Molecular characterization of GroES and GroEL homologues from Clostridium botulinum. J Protein Chem. 2003 Jan;22(1):99–108. doi: 10.1023/a:1023028113566. [DOI] [PubMed] [Google Scholar]
  25. Saint N., Lou K. L., Widmer C., Luckey M., Schirmer T., Rosenbusch J. P. Structural and functional characterization of OmpF porin mutants selected for larger pore size. II. Functional characterization. J Biol Chem. 1996 Aug 23;271(34):20676–20680. [PubMed] [Google Scholar]
  26. Takata T., Wai S. N., Takade A., Sawae Y., Ono J., Amako K. The purification of a GroEL-like stress protein from aerobically adapted Campylobacter jejuni. Microbiol Immunol. 1995;39(9):639–645. doi: 10.1111/j.1348-0421.1995.tb03245.x. [DOI] [PubMed] [Google Scholar]
  27. Thies F. L., Weishaupt A., Karch H., Hartung H. P., Giegerich G. Cloning, sequencing and molecular analysis of the Campylobacter jejuni groESL bicistronic operon. Microbiology. 1999 Jan;145(Pt 1):89–98. doi: 10.1099/13500872-145-1-89. [DOI] [PubMed] [Google Scholar]
  28. Tieman B. C., Johnston M. F., Fisher M. T. A comparison of the GroE chaperonin requirements for sequentially and structurally homologous malate dehydrogenases: the importance of folding kinetics and solution environment. J Biol Chem. 2001 Sep 10;276(48):44541–44550. doi: 10.1074/jbc.M106693200. [DOI] [PubMed] [Google Scholar]
  29. Van Gelder P., De Cock H., Tommassen J. Detergent-induced folding of the outer-membrane protein PhoE, a pore protein induced by phosphate limitation. Eur J Biochem. 1994 Dec 15;226(3):783–787. doi: 10.1111/j.1432-1033.1994.00783.x. [DOI] [PubMed] [Google Scholar]
  30. Van Gelder P., Tommassen J. Demonstration of a folded monomeric form of porin PhoE of Escherichia coli in vivo. J Bacteriol. 1996 Sep;178(17):5320–5322. doi: 10.1128/jb.178.17.5320-5322.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Xu Z., Horwich A. L., Sigler P. B. The crystal structure of the asymmetric GroEL-GroES-(ADP)7 chaperonin complex. Nature. 1997 Aug 21;388(6644):741–750. doi: 10.1038/41944. [DOI] [PubMed] [Google Scholar]
  32. Zhuang J., Engel A., Pagés J. M., Bolla J. M. The Campylobacter jejuni porin trimers pack into different lattice types when reconstituted in the presence of lipid. Eur J Biochem. 1997 Mar 1;244(2):575–579. doi: 10.1111/j.1432-1033.1997.t01-1-00575.x. [DOI] [PubMed] [Google Scholar]
  33. de Cock H., Hendriks R., de Vrije T., Tommassen J. Assembly of an in vitro synthesized Escherichia coli outer membrane porin into its stable trimeric configuration. J Biol Chem. 1990 Mar 15;265(8):4646–4651. [PubMed] [Google Scholar]
  34. de Cock H., Pasveer M., Tommassen J., Bouveret E. Identification of phospholipids as new components that assist in the in vitro trimerization of a bacterial pore protein. Eur J Biochem. 2001 Feb;268(3):865–875. doi: 10.1046/j.1432-1327.2001.01975.x. [DOI] [PubMed] [Google Scholar]
  35. de Cock H., van Blokland S., Tommassen J. In vitro insertion and assembly of outer membrane protein PhoE of Escherichia coli K-12 into the outer membrane. Role of Triton X-100. J Biol Chem. 1996 May 31;271(22):12885–12890. doi: 10.1074/jbc.271.22.12885. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES