Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 Mar 15;378(Pt 3):793–799. doi: 10.1042/BJ20031680

The second metal-binding site of 70 kDa heat-shock protein is essential for ADP binding, ATP hydrolysis and ATP synthesis.

Xueji Wu 1, Mihiro Yano 1, Hiroyo Washida 1, Hiroshi Kido 1
PMCID: PMC1224023  PMID: 14664695

Abstract

The chaperone activity of Hsp70 (70 kDa heat-shock protein) in protein folding and its conformational switch, including oligomeric and monomeric interconversion, are regulated by the hydrolysis of ATP and the ATP-ADP exchange cycle. The crystal structure of human ATPase domain shows two metal-binding sites, the first for ATP binding and a second, in close proximity to the first, whose function remains unknown [Sriram, Osipiuk, Freeman, Morimoto and Joachimiak (1997) Structure 5, 403-414]. In this study, we have characterized the second metal-binding motif by site-directed mutagenesis and the kinetics of ATP and ADP binding, and found that the second metal-binding site, comprising a loop co-ordinated by His-227, Glu-231 and Asp-232, participates both in ATP hydrolysis and ATP-synthetic activities, in co-operation with the first metal-binding site. The first metal-binding site, a catalytic centre, is essential for ATP binding and the second site for ADP binding in the reactions of ATP hydrolysis and ATP synthesis.

Full Text

The Full Text of this article is available as a PDF (175.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barthel T. K., Walker G. C. Inferences concerning the ATPase properties of DnaK and other HSP70s are affected by the ADP kinase activity of copurifying nucleoside-diphosphate kinase. J Biol Chem. 1999 Dec 17;274(51):36670–36678. doi: 10.1074/jbc.274.51.36670. [DOI] [PubMed] [Google Scholar]
  2. Beckmann R. P., Mizzen L. E., Welch W. J. Interaction of Hsp 70 with newly synthesized proteins: implications for protein folding and assembly. Science. 1990 May 18;248(4957):850–854. doi: 10.1126/science.2188360. [DOI] [PubMed] [Google Scholar]
  3. Berry M. B., Meador B., Bilderback T., Liang P., Glaser M., Phillips G. N., Jr The closed conformation of a highly flexible protein: the structure of E. coli adenylate kinase with bound AMP and AMPPNP. Proteins. 1994 Jul;19(3):183–198. doi: 10.1002/prot.340190304. [DOI] [PubMed] [Google Scholar]
  4. Blond-Elguindi S., Fourie A. M., Sambrook J. F., Gething M. J. Peptide-dependent stimulation of the ATPase activity of the molecular chaperone BiP is the result of conversion of oligomers to active monomers. J Biol Chem. 1993 Jun 15;268(17):12730–12735. [PubMed] [Google Scholar]
  5. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  6. Bukau B., Horwich A. L. The Hsp70 and Hsp60 chaperone machines. Cell. 1998 Feb 6;92(3):351–366. doi: 10.1016/s0092-8674(00)80928-9. [DOI] [PubMed] [Google Scholar]
  7. Erent M., Gonin P., Cherfils J., Tissier P., Raschellà G., Giartosio A., Agou F., Sarger C., Lacombe M. L., Konrad M. Structural and catalytic properties and homology modelling of the human nucleoside diphosphate kinase C, product of the DRnm23 gene. Eur J Biochem. 2001 Apr;268(7):1972–1981. doi: 10.1046/j.1432-1327.2001.2076.doc.x. [DOI] [PubMed] [Google Scholar]
  8. Freeman B. C., Myers M. P., Schumacher R., Morimoto R. I. Identification of a regulatory motif in Hsp70 that affects ATPase activity, substrate binding and interaction with HDJ-1. EMBO J. 1995 May 15;14(10):2281–2292. doi: 10.1002/j.1460-2075.1995.tb07222.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Harrison C. J., Hayer-Hartl M., Di Liberto M., Hartl F., Kuriyan J. Crystal structure of the nucleotide exchange factor GrpE bound to the ATPase domain of the molecular chaperone DnaK. Science. 1997 Apr 18;276(5311):431–435. doi: 10.1126/science.276.5311.431. [DOI] [PubMed] [Google Scholar]
  10. Hartl F. U. Molecular chaperones in cellular protein folding. Nature. 1996 Jun 13;381(6583):571–579. doi: 10.1038/381571a0. [DOI] [PubMed] [Google Scholar]
  11. Hiromura M., Yano M., Mori H., Inoue M., Kido H. Intrinsic ADP-ATP exchange activity is a novel function of the molecular chaperone, Hsp70. J Biol Chem. 1998 Mar 6;273(10):5435–5438. doi: 10.1074/jbc.273.10.5435. [DOI] [PubMed] [Google Scholar]
  12. Hunt C., Morimoto R. I. Conserved features of eukaryotic hsp70 genes revealed by comparison with the nucleotide sequence of human hsp70. Proc Natl Acad Sci U S A. 1985 Oct;82(19):6455–6459. doi: 10.1073/pnas.82.19.6455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kang P. J., Ostermann J., Shilling J., Neupert W., Craig E. A., Pfanner N. Requirement for hsp70 in the mitochondrial matrix for translocation and folding of precursor proteins. Nature. 1990 Nov 8;348(6297):137–143. doi: 10.1038/348137a0. [DOI] [PubMed] [Google Scholar]
  14. Kido H., Vita A., Horecker B. L. Ligand binding to proteins by equilibrium gel penetration. Methods Enzymol. 1985;117:342–346. doi: 10.1016/s0076-6879(85)17019-9. [DOI] [PubMed] [Google Scholar]
  15. Leung S. M., Hightower L. E. A 16-kDa protein functions as a new regulatory protein for Hsc70 molecular chaperone and is identified as a member of the Nm23/nucleoside diphosphate kinase family. J Biol Chem. 1997 Jan 31;272(5):2607–2614. doi: 10.1074/jbc.272.5.2607. [DOI] [PubMed] [Google Scholar]
  16. Marcu M. G., Chadli A., Bouhouche I., Catelli M., Neckers L. M. The heat shock protein 90 antagonist novobiocin interacts with a previously unrecognized ATP-binding domain in the carboxyl terminus of the chaperone. J Biol Chem. 2000 Nov 24;275(47):37181–37186. doi: 10.1074/jbc.M003701200. [DOI] [PubMed] [Google Scholar]
  17. Mathews I. I., Erion M. D., Ealick S. E. Structure of human adenosine kinase at 1.5 A resolution. Biochemistry. 1998 Nov 10;37(45):15607–15620. doi: 10.1021/bi9815445. [DOI] [PubMed] [Google Scholar]
  18. McCarty J. S., Walker G. C. DnaK as a thermometer: threonine-199 is site of autophosphorylation and is critical for ATPase activity. Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9513–9517. doi: 10.1073/pnas.88.21.9513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Muñoz-Dorado J., Inouye S., Inouye M. Nucleoside diphosphate kinase from Myxococcus xanthus. II. Biochemical characterization. J Biol Chem. 1990 Feb 15;265(5):2707–2712. [PubMed] [Google Scholar]
  20. Müller-Dieckmann H. J., Schulz G. E. Substrate specificity and assembly of the catalytic center derived from two structures of ligated uridylate kinase. J Mol Biol. 1995 Mar 3;246(4):522–530. doi: 10.1006/jmbi.1994.0104. [DOI] [PubMed] [Google Scholar]
  21. O'Brien M. C., Flaherty K. M., McKay D. B. Lysine 71 of the chaperone protein Hsc70 Is essential for ATP hydrolysis. J Biol Chem. 1996 Jul 5;271(27):15874–15878. doi: 10.1074/jbc.271.27.15874. [DOI] [PubMed] [Google Scholar]
  22. Ohtsuki K., Yokoyama M. Direct activation of guanine nucleotide binding proteins through a high-energy phosphate-transfer by nucleoside diphosphate-kinase. Biochem Biophys Res Commun. 1987 Oct 14;148(1):300–307. doi: 10.1016/0006-291x(87)91110-7. [DOI] [PubMed] [Google Scholar]
  23. Ohtsuki K., Yokoyama M., Koike T., Ishida N. Nucleosidediphosphate kinase in Escherichia coli: its polypeptide structure and reaction intermediate. Biochem Int. 1984 May;8(5):715–723. [PubMed] [Google Scholar]
  24. Osipiuk J., Walsh M. A., Freeman B. C., Morimoto R. I., Joachimiak A. Structure of a new crystal form of human Hsp70 ATPase domain. Acta Crystallogr D Biol Crystallogr. 1999 May;55(Pt 5):1105–1107. doi: 10.1107/s0907444999002103. [DOI] [PubMed] [Google Scholar]
  25. Palleros D. R., Shi L., Reid K. L., Fink A. L. hsp70-protein complexes. Complex stability and conformation of bound substrate protein. J Biol Chem. 1994 May 6;269(18):13107–13114. [PubMed] [Google Scholar]
  26. Rajapandi T., Wu C., Eisenberg E., Greene L. Characterization of D10S and K71E mutants of human cytosolic hsp70. Biochemistry. 1998 May 19;37(20):7244–7250. doi: 10.1021/bi972252r. [DOI] [PubMed] [Google Scholar]
  27. Rose T., Sebo P., Bellalou J., Ladant D. Interaction of calcium with Bordetella pertussis adenylate cyclase toxin. Characterization of multiple calcium-binding sites and calcium-induced conformational changes. J Biol Chem. 1995 Nov 3;270(44):26370–26376. doi: 10.1074/jbc.270.44.26370. [DOI] [PubMed] [Google Scholar]
  28. Sadis S., Hightower L. E. Unfolded proteins stimulate molecular chaperone Hsc70 ATPase by accelerating ADP/ATP exchange. Biochemistry. 1992 Oct 6;31(39):9406–9412. doi: 10.1021/bi00154a012. [DOI] [PubMed] [Google Scholar]
  29. Schlossman D. M., Schmid S. L., Braell W. A., Rothman J. E. An enzyme that removes clathrin coats: purification of an uncoating ATPase. J Cell Biol. 1984 Aug;99(2):723–733. doi: 10.1083/jcb.99.2.723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Schmid D., Baici A., Gehring H., Christen P. Kinetics of molecular chaperone action. Science. 1994 Feb 18;263(5149):971–973. doi: 10.1126/science.8310296. [DOI] [PubMed] [Google Scholar]
  31. Sriram M., Osipiuk J., Freeman B., Morimoto R., Joachimiak A. Human Hsp70 molecular chaperone binds two calcium ions within the ATPase domain. Structure. 1997 Mar 15;5(3):403–414. doi: 10.1016/s0969-2126(97)00197-4. [DOI] [PubMed] [Google Scholar]
  32. Wagner I., Arlt H., van Dyck L., Langer T., Neupert W. Molecular chaperones cooperate with PIM1 protease in the degradation of misfolded proteins in mitochondria. EMBO J. 1994 Nov 1;13(21):5135–5145. doi: 10.1002/j.1460-2075.1994.tb06843.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Yano M., Mori S., Niwa Y., Inoue M., Kido H. Intrinsic nucleoside diphosphate kinase-like activity as a novel function of 14-3-3 proteins. FEBS Lett. 1997 Dec 15;419(2-3):244–248. doi: 10.1016/s0014-5793(97)01469-5. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES