Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 Mar 15;378(Pt 3):717–726. doi: 10.1042/BJ20031860

Diversity of folds in animal toxins acting on ion channels.

Stéphanie Mouhat 1, Besma Jouirou 1, Amor Mosbah 1, Michel De Waard 1, Jean-Marc Sabatier 1
PMCID: PMC1224033  PMID: 14674883

Abstract

Animal toxins acting on ion channels of excitable cells are principally highly potent short peptides that are present in limited amounts in the venoms of various unrelated species, such as scorpions, snakes, sea anemones, spiders, insects, marine cone snails and worms. These toxins have been used extensively as invaluable biochemical and pharmacological tools to characterize and discriminate between the various ion channel types that differ in ionic selectivity, structure and/or cell function. Alongside the huge molecular and functional diversity of ion channels, a no less impressive structural diversity of animal toxins has been indicated by the discovery of an increasing number of polypeptide folds that are able to target these ion channels. Indeed, it appears that these peptide toxins have evolved over time on the basis of clearly distinct architectural motifs, in order to adapt to different ion channel modulating strategies (pore blockers compared with gating modifiers). Herein, we provide an up-to-date overview of the various types of fold from animal toxins that act on ion channels selective for K+, Na+, Ca2+ or Cl- ions, with special emphasis on disulphide bridge frameworks and structural motifs associated with these peptide folds.

Full Text

The Full Text of this article is available as a PDF (444.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albrand J. P., Blackledge M. J., Pascaud F., Hollecker M., Marion D. NMR and restrained molecular dynamics study of the three-dimensional solution structure of toxin FS2, a specific blocker of the L-type calcium channel, isolated from black mamba venom. Biochemistry. 1995 May 2;34(17):5923–5937. doi: 10.1021/bi00017a022. [DOI] [PubMed] [Google Scholar]
  2. Alessandri-Haber N., Lecoq A., Gasparini S., Grangier-Macmath G., Jacquet G., Harvey A. L., de Medeiros C., Rowan E. G., Gola M., Ménez A. Mapping the functional anatomy of BgK on Kv1.1, Kv1.2, and Kv1.3. Clues to design analogs with enhanced selectivity. J Biol Chem. 1999 Dec 10;274(50):35653–35661. doi: 10.1074/jbc.274.50.35653. [DOI] [PubMed] [Google Scholar]
  3. Barnham K. J., Dyke T. R., Kem W. R., Norton R. S. Structure of neurotoxin B-IV from the marine worm Cerebratulus lacteus: a helical hairpin cross-linked by disulphide bonding. J Mol Biol. 1997 May 23;268(5):886–902. doi: 10.1006/jmbi.1997.0980. [DOI] [PubMed] [Google Scholar]
  4. Batista Cesar V. F., Gómez-Lagunas Froylan, Rodríguez de la Vega Ricardo C., Hajdu Péter, Panyi György, Gáspár Rezsõ, Possani Lourival D. Two novel toxins from the Amazonian scorpion Tityus cambridgei that block Kv1.3 and Shaker B K(+)-channels with distinctly different affinities. Biochim Biophys Acta. 2002 Dec 16;1601(2):123–131. doi: 10.1016/s1570-9639(02)00458-2. [DOI] [PubMed] [Google Scholar]
  5. Beeton C., Wulff H., Barbaria J., Clot-Faybesse O., Pennington M., Bernard D., Cahalan M. D., Chandy K. G., Béraud E. Selective blockade of T lymphocyte K(+) channels ameliorates experimental autoimmune encephalomyelitis, a model for multiple sclerosis. Proc Natl Acad Sci U S A. 2001 Nov 20;98(24):13942–13947. doi: 10.1073/pnas.241497298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bernard C., Corzo G., Mosbah A., Nakajima T., Darbon H. Solution structure of Ptu1, a toxin from the assassin bug Peirates turpis that blocks the voltage-sensitive calcium channel N-type. Biochemistry. 2001 Oct 30;40(43):12795–12800. doi: 10.1021/bi015537j. [DOI] [PubMed] [Google Scholar]
  7. Blanc E., Sabatier J. M., Kharrat R., Meunier S., el Ayeb M., Van Rietschoten J., Darbon H. Solution structure of maurotoxin, a scorpion toxin from Scorpio maurus, with high affinity for voltage-gated potassium channels. Proteins. 1997 Nov;29(3):321–333. [PubMed] [Google Scholar]
  8. Bontems F., Gilquin B., Roumestand C., Ménez A., Toma F. Analysis of side-chain organization on a refined model of charybdotoxin: structural and functional implications. Biochemistry. 1992 Sep 1;31(34):7756–7764. doi: 10.1021/bi00149a003. [DOI] [PubMed] [Google Scholar]
  9. Bontems F., Roumestand C., Gilquin B., Ménez A., Toma F. Refined structure of charybdotoxin: common motifs in scorpion toxins and insect defensins. Science. 1991 Dec 6;254(5037):1521–1523. doi: 10.1126/science.1720574. [DOI] [PubMed] [Google Scholar]
  10. Chuang R. S., Jaffe H., Cribbs L., Perez-Reyes E., Swartz K. J. Inhibition of T-type voltage-gated calcium channels by a new scorpion toxin. Nat Neurosci. 1998 Dec;1(8):668–674. doi: 10.1038/3669. [DOI] [PubMed] [Google Scholar]
  11. Dauplais M., Lecoq A., Song J., Cotton J., Jamin N., Gilquin B., Roumestand C., Vita C., de Medeiros C. L., Rowan E. G. On the convergent evolution of animal toxins. Conservation of a diad of functional residues in potassium channel-blocking toxins with unrelated structures. J Biol Chem. 1997 Feb 14;272(7):4302–4309. doi: 10.1074/jbc.272.7.4302. [DOI] [PubMed] [Google Scholar]
  12. Davis J. H., Bradley E. K., Miljanich G. P., Nadasdi L., Ramachandran J., Basus V. J. Solution structure of omega-conotoxin GVIA using 2-D NMR spectroscopy and relaxation matrix analysis. Biochemistry. 1993 Jul 27;32(29):7396–7405. doi: 10.1021/bi00080a009. [DOI] [PubMed] [Google Scholar]
  13. Delepierre M., Prochnicka-Chalufour A., Boisbouvier J., Possani L. D. Pi7, an orphan peptide from the scorpion Pandinus imperator: a 1H-NMR analysis using a nano-NMR Probe. Biochemistry. 1999 Dec 21;38(51):16756–16765. doi: 10.1021/bi991685m. [DOI] [PubMed] [Google Scholar]
  14. Escoubas P., Diochot S., Corzo G. Structure and pharmacology of spider venom neurotoxins. Biochimie. 2000 Sep-Oct;82(9-10):893–907. doi: 10.1016/s0300-9084(00)01166-4. [DOI] [PubMed] [Google Scholar]
  15. Fajloun Z., Kharrat R., Chen L., Lecomte C., Di Luccio E., Bichet D., El Ayeb M., Rochat H., Allen P. D., Pessah I. N. Chemical synthesis and characterization of maurocalcine, a scorpion toxin that activates Ca(2+) release channel/ryanodine receptors. FEBS Lett. 2000 Mar 10;469(2-3):179–185. doi: 10.1016/s0014-5793(00)01239-4. [DOI] [PubMed] [Google Scholar]
  16. Fajloun Z., Mosbah A., Carlier E., Mansuelle P., Sandoz G., Fathallah M., di Luccio E., Devaux C., Rochat H., Darbon H. Maurotoxin versus Pi1/HsTx1 scorpion toxins. Toward new insights in the understanding of their distinct disulfide bridge patterns. J Biol Chem. 2000 Dec 15;275(50):39394–39402. doi: 10.1074/jbc.M006810200. [DOI] [PubMed] [Google Scholar]
  17. Fletcher J. I., Chapman B. E., Mackay J. P., Howden M. E., King G. F. The structure of versutoxin (delta-atracotoxin-Hv1) provides insights into the binding of site 3 neurotoxins to the voltage-gated sodium channel. Structure. 1997 Nov 15;5(11):1525–1535. doi: 10.1016/s0969-2126(97)00301-8. [DOI] [PubMed] [Google Scholar]
  18. Flinn J. P., Pallaghy P. K., Lew M. J., Murphy R., Angus J. A., Norton R. S. Roles of key functional groups in omega-conotoxin GVIA synthesis, structure and functional assay of selected peptide analogues. Eur J Biochem. 1999 Jun;262(2):447–455. doi: 10.1046/j.1432-1327.1999.00383.x. [DOI] [PubMed] [Google Scholar]
  19. Gage Matthew J., Rane Stanley G., Hockerman Gregory H., Smith Thomas J. The virally encoded fungal toxin KP4 specifically blocks L-type voltage-gated calcium channels. Mol Pharmacol. 2002 Apr;61(4):936–944. doi: 10.1124/mol.61.4.936. [DOI] [PubMed] [Google Scholar]
  20. Gasparini S., Danse J. M., Lecoq A., Pinkasfeld S., Zinn-Justin S., Young L. C., de Medeiros C. C., Rowan E. G., Harvey A. L., Ménez A. Delineation of the functional site of alpha-dendrotoxin. The functional topographies of dendrotoxins are different but share a conserved core with those of other Kv1 potassium channel-blocking toxins. J Biol Chem. 1998 Sep 25;273(39):25393–25403. doi: 10.1074/jbc.273.39.25393. [DOI] [PubMed] [Google Scholar]
  21. Gilquin Bernard, Bourgoin Marjorie, Ménez Renée, Le Du Marie-Hélène, Servent Denis, Zinn-Justin Sophie, Ménez André. Motions and structural variability within toxins: implication for their use as scaffolds for protein engineering. Protein Sci. 2003 Feb;12(2):266–277. doi: 10.1110/ps.0227703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Gu F., Khimani A., Rane S. G., Flurkey W. H., Bozarth R. F., Smith T. J. Structure and function of a virally encoded fungal toxin from Ustilago maydis: a fungal and mammalian Ca2+ channel inhibitor. Structure. 1995 Aug 15;3(8):805–814. doi: 10.1016/s0969-2126(01)00215-5. [DOI] [PubMed] [Google Scholar]
  23. Hill J. M., Atkins A. R., Loughnan M. L., Jones A., Adams D. A., Martin R. C., Lewis R. J., Craik D. J., Alewood P. F. Conotoxin TVIIA, a novel peptide from the venom of Conus tulipa 1. Isolation, characterization and chemical synthesis. Eur J Biochem. 2000 Aug;267(15):4642–4648. doi: 10.1046/j.1432-1327.2000.01508.x. [DOI] [PubMed] [Google Scholar]
  24. Housset D., Habersetzer-Rochat C., Astier J. P., Fontecilla-Camps J. C. Crystal structure of toxin II from the scorpion Androctonus australis Hector refined at 1.3 A resolution. J Mol Biol. 1994 Apr 22;238(1):88–103. doi: 10.1006/jmbi.1994.1270. [DOI] [PubMed] [Google Scholar]
  25. Jouirou Besma, Mosbah Amor, Visan Violeta, Grissmer Stephan, M'Barek Sarrah, Fajloun Ziad, Van Rietschoten Jurphaas, Devaux Christiane, Rochat Hervé, Lippens Guy. Cobatoxin 1 from Centruroides noxius scorpion venom: chemical synthesis, three-dimensional structure in solution, pharmacology and docking on K+ channels. Biochem J. 2004 Jan 1;377(Pt 1):37–49. doi: 10.1042/BJ20030977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Katoh E., Nishio H., Inui T., Nishiuchi Y., Kimura T., Sakakibara S., Yamazaki T. Structural basis for the biological activity of dendrotoxin-I, a potent potassium channel blocker. Biopolymers. 2000 Jul;54(1):44–57. doi: 10.1002/(SICI)1097-0282(200007)54:1<44::AID-BIP50>3.0.CO;2-Z. [DOI] [PubMed] [Google Scholar]
  27. Kharrat R., Mabrouk K., Crest M., Darbon H., Oughideni R., Martin-Eauclaire M. F., Jacquet G., el Ayeb M., Van Rietschoten J., Rochat H. Chemical synthesis and characterization of maurotoxin, a short scorpion toxin with four disulfide bridges that acts on K+ channels. Eur J Biochem. 1996 Dec 15;242(3):491–498. doi: 10.1111/j.1432-1033.1996.0491r.x. [DOI] [PubMed] [Google Scholar]
  28. Kini R. Manjunatha. Molecular moulds with multiple missions: functional sites in three-finger toxins. Clin Exp Pharmacol Physiol. 2002 Sep;29(9):815–822. doi: 10.1046/j.1440-1681.2002.03725.x. [DOI] [PubMed] [Google Scholar]
  29. Lancelin J. M., Foray M. F., Poncin M., Hollecker M., Marion D. Proteinase inhibitor homologues as potassium channel blockers. Nat Struct Biol. 1994 Apr;1(4):246–250. doi: 10.1038/nsb0494-246. [DOI] [PubMed] [Google Scholar]
  30. Lewis Richard J., Garcia Maria L. Therapeutic potential of venom peptides. Nat Rev Drug Discov. 2003 Oct;2(10):790–802. doi: 10.1038/nrd1197. [DOI] [PubMed] [Google Scholar]
  31. Lippens G., Najib J., Wodak S. J., Tartar A. NMR sequential assignments and solution structure of chlorotoxin, a small scorpion toxin that blocks chloride channels. Biochemistry. 1995 Jan 10;34(1):13–21. doi: 10.1021/bi00001a003. [DOI] [PubMed] [Google Scholar]
  32. Little M. J., Zappia C., Gilles N., Connor M., Tyler M. I., Martin-Eauclaire M. F., Gordon D., Nicholson G. M. delta-Atracotoxins from australian funnel-web spiders compete with scorpion alpha-toxin binding but differentially modulate alkaloid toxin activation of voltage-gated sodium channels. J Biol Chem. 1998 Oct 16;273(42):27076–27083. doi: 10.1074/jbc.273.42.27076. [DOI] [PubMed] [Google Scholar]
  33. M'Barek Sarrah, Lopez-Gonzalez Ignacio, Andreotti Nicolas, di Luccio Eric, Visan Violeta, Grissmer Stephan, Judge Susan, El Ayeb Mohamed, Darbon Hervé, Rochat Hervé. A maurotoxin with constrained standard disulfide bridging: innovative strategy of chemical synthesis, pharmacology, and docking on K+ channels. J Biol Chem. 2003 Jun 3;278(33):31095–31104. doi: 10.1074/jbc.M304271200. [DOI] [PubMed] [Google Scholar]
  34. M'Barek Sarrah, Mosbah Amor, Sandoz Guillaume, Fajloun Ziad, Olamendi-Portugal Timoteo, Rochat Hervé, Sampieri François, Guijarro J. Iñaki, Mansuelle Pascal, Delepierre Muriel. Synthesis and characterization of Pi4, a scorpion toxin from Pandinus imperator that acts on K+ channels. Eur J Biochem. 2003 Sep;270(17):3583–3592. doi: 10.1046/j.1432-1033.2003.03743.x. [DOI] [PubMed] [Google Scholar]
  35. Massilia Gabriella Raybaudi, Eliseo Tommaso, Grolleau Francoise, Lapied Bruno, Barbier Julien, Bournaud Roland, Molgó Jordi, Cicero Daniel Oscar, Paci Maurizio, Schininà Maria Eugenia. Contryphan-Vn: a modulator of Ca2+-dependent K+ channels. Biochem Biophys Res Commun. 2003 Mar 28;303(1):238–246. doi: 10.1016/s0006-291x(03)00331-0. [DOI] [PubMed] [Google Scholar]
  36. Mouhat Stéphanie, Mosbah Amor, Visan Violeta, Wulff Heike, Delepierre Muriel, Darbon Hervé, Grissmer Stephan, De Waard Michel, Sabatier Jean-Marc. The 'functional' dyad of scorpion toxin Pi1 is not itself a prerequisite for toxin binding to the voltage-gated Kv1.2 potassium channels. Biochem J. 2004 Jan 1;377(Pt 1):25–36. doi: 10.1042/BJ20030115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Ménez A. Functional architectures of animal toxins: a clue to drug design? Toxicon. 1998 Nov;36(11):1557–1572. doi: 10.1016/s0041-0101(98)00148-2. [DOI] [PubMed] [Google Scholar]
  38. Nicastro Giuseppe, Franzoni Lorella, de Chiara Cesira, Mancin Adriana C., Giglio Josè R., Spisni Alberto. Solution structure of crotamine, a Na+ channel affecting toxin from Crotalus durissus terrificus venom. Eur J Biochem. 2003 May;270(9):1969–1979. doi: 10.1046/j.1432-1033.2003.03563.x. [DOI] [PubMed] [Google Scholar]
  39. Nielsen K. J., Schroeder T., Lewis R. Structure-activity relationships of omega-conotoxins at N-type voltage-sensitive calcium channels. J Mol Recognit. 2000 Mar-Apr;13(2):55–70. doi: 10.1002/(SICI)1099-1352(200003/04)13:2<55::AID-JMR488>3.0.CO;2-O. [DOI] [PubMed] [Google Scholar]
  40. Norton R. S. Structure and structure-function relationships of sea anemone proteins that interact with the sodium channel. Toxicon. 1991;29(9):1051–1084. doi: 10.1016/0041-0101(91)90205-6. [DOI] [PubMed] [Google Scholar]
  41. Olamendi-Portugal T., Gómez-Lagunas F., Gurrola G. B., Possani L. D. A novel structural class of K+-channel blocking toxin from the scorpion Pandinus imperator. Biochem J. 1996 May 1;315(Pt 3):977–981. doi: 10.1042/bj3150977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Olamendi-Portugal Timoteo, García Blanca Inés, López-González Ignacio, Van Der Walt Jurg, Dyason Karin, Ulens Chris, Tytgat Jan, Felix Ricardo, Darszon Alberto, Possani Lourival D. Two new scorpion toxins that target voltage-gated Ca2+ and Na+ channels. Biochem Biophys Res Commun. 2002 Dec 13;299(4):562–568. doi: 10.1016/s0006-291x(02)02706-7. [DOI] [PubMed] [Google Scholar]
  43. Oren D. A., Froy O., Amit E., Kleinberger-Doron N., Gurevitz M., Shaanan B. An excitatory scorpion toxin with a distinctive feature: an additional alpha helix at the C terminus and its implications for interaction with insect sodium channels. Structure. 1998 Sep 15;6(9):1095–1103. doi: 10.1016/s0969-2126(98)00111-7. [DOI] [PubMed] [Google Scholar]
  44. Pallaghy P. K., Nielsen K. J., Craik D. J., Norton R. S. A common structural motif incorporating a cystine knot and a triple-stranded beta-sheet in toxic and inhibitory polypeptides. Protein Sci. 1994 Oct;3(10):1833–1839. doi: 10.1002/pro.5560031022. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Peng Kuan, Shu Qin, Liu Zhonghua, Liang Songping. Function and solution structure of huwentoxin-IV, a potent neuronal tetrodotoxin (TTX)-sensitive sodium channel antagonist from Chinese bird spider Selenocosmia huwena. J Biol Chem. 2002 Sep 11;277(49):47564–47571. doi: 10.1074/jbc.M204063200. [DOI] [PubMed] [Google Scholar]
  46. Possani L. D., Becerril B., Delepierre M., Tytgat J. Scorpion toxins specific for Na+-channels. Eur J Biochem. 1999 Sep;264(2):287–300. doi: 10.1046/j.1432-1327.1999.00625.x. [DOI] [PubMed] [Google Scholar]
  47. Rogers J. C., Qu Y., Tanada T. N., Scheuer T., Catterall W. A. Molecular determinants of high affinity binding of alpha-scorpion toxin and sea anemone toxin in the S3-S4 extracellular loop in domain IV of the Na+ channel alpha subunit. J Biol Chem. 1996 Jul 5;271(27):15950–15962. doi: 10.1074/jbc.271.27.15950. [DOI] [PubMed] [Google Scholar]
  48. Rosengren K. Johan, Wilson David, Daly Norelle L., Alewood Paul F., Craik David J. Solution structures of the cis- and trans-Pro30 isomers of a novel 38-residue toxin from the venom of Hadronyche Infensa sp. that contains a cystine-knot motif within its four disulfide bonds. Biochemistry. 2002 Mar 12;41(10):3294–3301. doi: 10.1021/bi011932y. [DOI] [PubMed] [Google Scholar]
  49. Sabatier J. M., Zerrouk H., Darbon H., Mabrouk K., Benslimane A., Rochat H., Martin-Eauclaire M. F., Van Rietschoten J. P05, a new leiurotoxin I-like scorpion toxin: synthesis and structure-activity relationships of the alpha-amidated analog, a ligand of Ca(2+)-activated K+ channels with increased affinity. Biochemistry. 1993 Mar 23;32(11):2763–2770. doi: 10.1021/bi00062a005. [DOI] [PubMed] [Google Scholar]
  50. Savarin P., Guenneugues M., Gilquin B., Lamthanh H., Gasparini S., Zinn-Justin S., Ménez A. Three-dimensional structure of kappa-conotoxin PVIIA, a novel potassium channel-blocking toxin from cone snails. Biochemistry. 1998 Apr 21;37(16):5407–5416. doi: 10.1021/bi9730341. [DOI] [PubMed] [Google Scholar]
  51. Scanlon M. J., Naranjo D., Thomas L., Alewood P. F., Lewis R. J., Craik D. J. Solution structure and proposed binding mechanism of a novel potassium channel toxin kappa-conotoxin PVIIA. Structure. 1997 Dec 15;5(12):1585–1597. doi: 10.1016/s0969-2126(97)00307-9. [DOI] [PubMed] [Google Scholar]
  52. Shakkottai V. G., Regaya I., Wulff H., Fajloun Z., Tomita H., Fathallah M., Cahalan M. D., Gargus J. J., Sabatier J. M., Chandy K. G. Design and characterization of a highly selective peptide inhibitor of the small conductance calcium-activated K+ channel, SkCa2. J Biol Chem. 2001 Aug 29;276(46):43145–43151. doi: 10.1074/jbc.M106981200. [DOI] [PubMed] [Google Scholar]
  53. Srinivasan Kellathur N., Sivaraja Vaithiyalingam, Huys Isabelle, Sasaki Toru, Cheng Betty, Kumar Thallampuranam Krishnaswamy S., Sato Kazuki, Tytgat Jan, Yu Chin, San B. Chia Cheng. kappa-Hefutoxin1, a novel toxin from the scorpion Heterometrus fulvipes with unique structure and function. Importance of the functional diad in potassium channel selectivity. J Biol Chem. 2002 May 28;277(33):30040–30047. doi: 10.1074/jbc.M111258200. [DOI] [PubMed] [Google Scholar]
  54. Sun Yan-Mei, Bosmans Frank, Zhu Rong-Huan, Goudet Cyril, Xiong Yu-Mei, Tytgat Jan, Wang Da-Cheng. Importance of the conserved aromatic residues in the scorpion alpha-like toxin BmK M1: the hydrophobic surface region revisited. J Biol Chem. 2003 Apr 13;278(26):24125–24131. doi: 10.1074/jbc.M211931200. [DOI] [PubMed] [Google Scholar]
  55. Takahashi H., Kim J. I., Min H. J., Sato K., Swartz K. J., Shimada I. Solution structure of hanatoxin1, a gating modifier of voltage-dependent K(+) channels: common surface features of gating modifier toxins. J Mol Biol. 2000 Mar 31;297(3):771–780. doi: 10.1006/jmbi.2000.3609. [DOI] [PubMed] [Google Scholar]
  56. Tudor J. E., Pallaghy P. K., Pennington M. W., Norton R. S. Solution structure of ShK toxin, a novel potassium channel inhibitor from a sea anemone. Nat Struct Biol. 1996 Apr;3(4):317–320. doi: 10.1038/nsb0496-317. [DOI] [PubMed] [Google Scholar]
  57. Wang Chun-Guang, Gilles Nicolas, Hamon Alain, Le Gall Frédéric, Stankiewicz Maria, Pelhate Marcel, Xiong Yu-Mei, Wang Da-Cheng, Chi Cheng-Wu. Exploration of the functional site of a scorpion alpha-like toxin by site-directed mutagenesis. Biochemistry. 2003 Apr 29;42(16):4699–4708. doi: 10.1021/bi0270438. [DOI] [PubMed] [Google Scholar]
  58. Widmer H., Billeter M., Wüthrich K. Three-dimensional structure of the neurotoxin ATX Ia from Anemonia sulcata in aqueous solution determined by nuclear magnetic resonance spectroscopy. Proteins. 1989;6(4):357–371. doi: 10.1002/prot.340060403. [DOI] [PubMed] [Google Scholar]
  59. Wu J. J., Dai L., Lan Z. D., Chi C. W. The gene cloning and sequencing of Bm-12, a chlorotoxin-like peptide from the scorpion Buthus martensi Karsch. Toxicon. 2000 May;38(5):661–668. doi: 10.1016/s0041-0101(99)00181-6. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES