Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 Mar 15;378(Pt 3):1083–1087. doi: 10.1042/BJ20031150

Inhibition of hydroxyapatite formation by osteopontin phosphopeptides.

David A Pampena 1, Karen A Robertson 1, Olga Litvinova 1, Gilles Lajoie 1, Harvey A Goldberg 1, Graeme K Hunter 1
PMCID: PMC1224036  PMID: 14678013

Abstract

Osteopontin (OPN) is an acidic phosphoglycoprotein that is believed to function in the prevention of soft tissue calcification. In vitro studies have shown that OPN can inhibit the formation of hydroxyapatite (HA) and other biologically relevant crystal phases, and that this inhibitory activity requires phosphorylation of the protein; however, it is not known which phosphorylated residues are involved. We have synthesized peptides corresponding to four phosphoserine-containing sequences in rat OPN: OPN7-17, containing phosphoserines 10 and 11; OPN41-52, containing phosphoserines 46 and 47; OPN248-264, containing phosphoserines 250, 257 and 262; and OPN290-301, containing phosphoserines 295-297. The abilities of these peptides to inhibit de novo HA formation were determined using a constant-composition autotitration assay. All four OPN phosphopeptides caused a dose-dependent increase in nucleation lag time, but did not significantly affect subsequent formation of the crystals. However, OPN41-52 (inhibitory constant 73.5 min/microM) and OPN290-301 (72.2 min/microM) were approx. 4 times more potent inhibitors than OPN7-17 (19.7 min/microM) and OPN247-264 (16.3 min/microM). 'Scrambling' the amino acid sequence of OPN290-301 resulted in decreased potency (45.6 min/microM), whereas omission of the phosphate groups from this peptide caused a greater decrease (5.20 min/microM). These findings have identified phosphorylated sequences that are important for the ability of rat bone OPN to inhibit HA crystal formation, and suggest that negative-charge density is an important factor in this activity.

Full Text

The Full Text of this article is available as a PDF (107.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashkar S., Teplow D. B., Glimcher M. J., Saavedra R. A. In vitro phosphorylation of mouse osteopontin expressed in E. coli. Biochem Biophys Res Commun. 1993 Feb 26;191(1):126–133. doi: 10.1006/bbrc.1993.1193. [DOI] [PubMed] [Google Scholar]
  2. Boskey A. L., Maresca M., Ullrich W., Doty S. B., Butler W. T., Prince C. W. Osteopontin-hydroxyapatite interactions in vitro: inhibition of hydroxyapatite formation and growth in a gelatin-gel. Bone Miner. 1993 Aug;22(2):147–159. doi: 10.1016/s0169-6009(08)80225-5. [DOI] [PubMed] [Google Scholar]
  3. Chellaiah M., Hruska K. Osteopontin stimulates gelsolin-associated phosphoinositide levels and phosphatidylinositol triphosphate-hydroxyl kinase. Mol Biol Cell. 1996 May;7(5):743–753. doi: 10.1091/mbc.7.5.743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fields G. B., Noble R. L. Solid phase peptide synthesis utilizing 9-fluorenylmethoxycarbonyl amino acids. Int J Pept Protein Res. 1990 Mar;35(3):161–214. doi: 10.1111/j.1399-3011.1990.tb00939.x. [DOI] [PubMed] [Google Scholar]
  5. Fitzpatrick L. A., Severson A., Edwards W. D., Ingram R. T. Diffuse calcification in human coronary arteries. Association of osteopontin with atherosclerosis. J Clin Invest. 1994 Oct;94(4):1597–1604. doi: 10.1172/JCI117501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Giachelli C. M., Bae N., Almeida M., Denhardt D. T., Alpers C. E., Schwartz S. M. Osteopontin is elevated during neointima formation in rat arteries and is a novel component of human atherosclerotic plaques. J Clin Invest. 1993 Oct;92(4):1686–1696. doi: 10.1172/JCI116755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Goldberg H. A., Warner K. J., Li M. C., Hunter G. K. Binding of bone sialoprotein, osteopontin and synthetic polypeptides to hydroxyapatite. Connect Tissue Res. 2001;42(1):25–37. doi: 10.3109/03008200109014246. [DOI] [PubMed] [Google Scholar]
  8. Hay D. I., Carlson E. R., Schluckebier S. K., Moreno E. C., Schlesinger D. H. Inhibition of calcium phosphate precipitation by human salivary acidic proline-rich proteins: structure-activity relationships. Calcif Tissue Int. 1987 Mar;40(3):126–132. doi: 10.1007/BF02555696. [DOI] [PubMed] [Google Scholar]
  9. Hoyer J. R., Asplin J. R., Otvos L. Phosphorylated osteopontin peptides suppress crystallization by inhibiting the growth of calcium oxalate crystals. Kidney Int. 2001 Jul;60(1):77–82. doi: 10.1046/j.1523-1755.2001.00772.x. [DOI] [PubMed] [Google Scholar]
  10. Hunter G. K., Hauschka P. V., Poole A. R., Rosenberg L. C., Goldberg H. A. Nucleation and inhibition of hydroxyapatite formation by mineralized tissue proteins. Biochem J. 1996 Jul 1;317(Pt 1):59–64. doi: 10.1042/bj3170059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hunter G. K., Kyle C. L., Goldberg H. A. Modulation of crystal formation by bone phosphoproteins: structural specificity of the osteopontin-mediated inhibition of hydroxyapatite formation. Biochem J. 1994 Jun 15;300(Pt 3):723–728. doi: 10.1042/bj3000723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Jono S., Peinado C., Giachelli C. M. Phosphorylation of osteopontin is required for inhibition of vascular smooth muscle cell calcification. J Biol Chem. 2000 Jun 30;275(26):20197–20203. doi: 10.1074/jbc.M909174199. [DOI] [PubMed] [Google Scholar]
  13. Lasa M., Chang P. L., Prince C. W., Pinna L. A. Phosphorylation of osteopontin by Golgi apparatus casein kinase. Biochem Biophys Res Commun. 1997 Nov 26;240(3):602–605. doi: 10.1006/bbrc.1997.7702. [DOI] [PubMed] [Google Scholar]
  14. Mazzali M., Kipari T., Ophascharoensuk V., Wesson J. A., Johnson R., Hughes J. Osteopontin--a molecule for all seasons. QJM. 2002 Jan;95(1):3–13. doi: 10.1093/qjmed/95.1.3. [DOI] [PubMed] [Google Scholar]
  15. McKee M. D., Nanci A., Khan S. R. Ultrastructural immunodetection of osteopontin and osteocalcin as major matrix components of renal calculi. J Bone Miner Res. 1995 Dec;10(12):1913–1929. doi: 10.1002/jbmr.5650101211. [DOI] [PubMed] [Google Scholar]
  16. Neame P. J., Butler W. T. Posttranslational modification in rat bone osteopontin. Connect Tissue Res. 1996;35(1-4):145–150. doi: 10.3109/03008209609029185. [DOI] [PubMed] [Google Scholar]
  17. Oates A. J., Barraclough R., Rudland P. S. The role of osteopontin in tumorigenesis and metastasis. Invasion Metastasis. 1997;17(1):1–15. [PubMed] [Google Scholar]
  18. Oldberg A., Franzén A., Heinegård D. Cloning and sequence analysis of rat bone sialoprotein (osteopontin) cDNA reveals an Arg-Gly-Asp cell-binding sequence. Proc Natl Acad Sci U S A. 1986 Dec;83(23):8819–8823. doi: 10.1073/pnas.83.23.8819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Prince C. W., Oosawa T., Butler W. T., Tomana M., Bhown A. S., Bhown M., Schrohenloher R. E. Isolation, characterization, and biosynthesis of a phosphorylated glycoprotein from rat bone. J Biol Chem. 1987 Feb 25;262(6):2900–2907. [PubMed] [Google Scholar]
  20. Raj P. A., Johnsson M., Levine M. J., Nancollas G. H. Salivary statherin. Dependence on sequence, charge, hydrogen bonding potency, and helical conformation for adsorption to hydroxyapatite and inhibition of mineralization. J Biol Chem. 1992 Mar 25;267(9):5968–5976. [PubMed] [Google Scholar]
  21. Razzouk S., Brunn J. C., Qin C., Tye C. E., Goldberg H. A., Butler W. T. Osteopontin posttranslational modifications, possibly phosphorylation, are required for in vitro bone resorption but not osteoclast adhesion. Bone. 2002 Jan;30(1):40–47. doi: 10.1016/s8756-3282(01)00637-8. [DOI] [PubMed] [Google Scholar]
  22. Safran J. B., Butler W. T., Farach-Carson M. C. Modulation of osteopontin post-translational state by 1, 25-(OH)2-vitamin D3. Dependence on Ca2+ influx. J Biol Chem. 1998 Nov 6;273(45):29935–29941. doi: 10.1074/jbc.273.45.29935. [DOI] [PubMed] [Google Scholar]
  23. Salih E., Ashkar S., Zhou H. Y., Gerstenfeld L., Glimcher M. J. Protein kinases of cultured chicken osteoblasts that phosphorylate extracellular bone proteins. Connect Tissue Res. 1996;35(1-4):207–213. doi: 10.3109/03008209609029193. [DOI] [PubMed] [Google Scholar]
  24. Shiraga H., Min W., VanDusen W. J., Clayman M. D., Miner D., Terrell C. H., Sherbotie J. R., Foreman J. W., Przysiecki C., Neilson E. G. Inhibition of calcium oxalate crystal growth in vitro by uropontin: another member of the aspartic acid-rich protein superfamily. Proc Natl Acad Sci U S A. 1992 Jan 1;89(1):426–430. doi: 10.1073/pnas.89.1.426. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Sodek J., Ganss B., McKee M. D. Osteopontin. Crit Rev Oral Biol Med. 2000;11(3):279–303. doi: 10.1177/10454411000110030101. [DOI] [PubMed] [Google Scholar]
  26. Speer Mei Y., McKee Marc D., Guldberg Robert E., Liaw Lucy, Yang Hsueh-Ying, Tung Elyse, Karsenty Gerard, Giachelli Cecilia M. Inactivation of the osteopontin gene enhances vascular calcification of matrix Gla protein-deficient mice: evidence for osteopontin as an inducible inhibitor of vascular calcification in vivo. J Exp Med. 2002 Oct 21;196(8):1047–1055. doi: 10.1084/jem.20020911. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Steitz Susan A., Speer Mei Y., McKee Marc D., Liaw Lucy, Almeida Manuela, Yang Hsueh, Giachelli Cecilia M. Osteopontin inhibits mineral deposition and promotes regression of ectopic calcification. Am J Pathol. 2002 Dec;161(6):2035–2046. doi: 10.1016/S0002-9440(10)64482-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Sørensen E. S., Højrup P., Petersen T. E. Posttranslational modifications of bovine osteopontin: identification of twenty-eight phosphorylation and three O-glycosylation sites. Protein Sci. 1995 Oct;4(10):2040–2049. doi: 10.1002/pro.5560041009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Wada T., McKee M. D., Steitz S., Giachelli C. M. Calcification of vascular smooth muscle cell cultures: inhibition by osteopontin. Circ Res. 1999 Feb 5;84(2):166–178. doi: 10.1161/01.res.84.2.166. [DOI] [PubMed] [Google Scholar]
  30. Weber Georg F., Zawaideh Samer, Hikita Sherry, Kumar Vikram A., Cantor Harvey, Ashkar Samy. Phosphorylation-dependent interaction of osteopontin with its receptors regulates macrophage migration and activation. J Leukoc Biol. 2002 Oct;72(4):752–761. [PubMed] [Google Scholar]
  31. Wesson Jeffrey A., Johnson Richard J., Mazzali Marrilda, Beshensky Anne M., Stietz Susan, Giachelli Ceci, Liaw Lucy, Alpers Charles E., Couser William G., Kleinman Jack G. Osteopontin is a critical inhibitor of calcium oxalate crystal formation and retention in renal tubules. J Am Soc Nephrol. 2003 Jan;14(1):139–147. doi: 10.1097/01.asn.0000040593.93815.9d. [DOI] [PubMed] [Google Scholar]
  32. Williams G., Sallis J. D. Structural factors influencing the ability of compounds to inhibit hydroxyapatite formation. Calcif Tissue Int. 1982 Mar;34(2):169–177. doi: 10.1007/BF02411229. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES