Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 Mar 15;378(Pt 3):1079–1082. doi: 10.1042/BJ20031701

Critical cysteine residues for regulation of integrin alphaIIbbeta3 are clustered in the epidermal growth factor domains of the beta3 subunit.

Tetsuji Kamata 1, Hironobu Ambo 1, Wilma Puzon-McLaughlin 1, Kenneth Khiem Tieu 1, Makoto Handa 1, Yasuo Ikeda 1, Yoshikazu Takada 1
PMCID: PMC1224037  PMID: 14690453

Abstract

Chemical or enzymic reduction/oxidation of integrin cysteine residues (e.g. by reducing agents and protein disulphide isomerase) may be a mechanism for regulating integrin function. It has also been proposed that unique cysteine residues in the integrin beta3 subunit are involved in the regulation of alphaIIbbeta3. In the present study, we studied systematically the role of disulphide bonds in beta3 on the ligand-binding function of alphaIIbbeta3 by mutating individual cysteine residues of beta3 to serine. We found that the disulphide bonds that are critical for alphaIIbbeta3 regulation are clustered within the EGF (epidermal growth factor) domains. Interestingly, disrupting only a single disulphide bond in the EGF domains was enough to activate alphaIIbbeta3 fully. In contrast, only two (of 13) disulphide bonds tested outside the EGF domains activated alphaIIbbeta3. These results suggest that the disulphide bonds in the EGF domains should be intact to keep alphaIIbbeta3 in an inactive state, and that there is no unique cysteine residue in the EGF domain critical for regulating the receptor. The cysteine residues in the EGF domains are potential targets for chemical or enzymic reduction.

Full Text

The Full Text of this article is available as a PDF (167.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ambo H., Kamata T., Handa M., Taki M., Kuwajima M., Kawai Y., Oda A., Murata M., Takada Y., Watanabe K. Three novel integrin beta3 subunit missense mutations (H280P, C560F, and G579S) in thrombasthenia, including one (H280P) prevalent in Japanese patients. Biochem Biophys Res Commun. 1998 Oct 29;251(3):763–768. doi: 10.1006/bbrc.1998.9526. [DOI] [PubMed] [Google Scholar]
  2. Butta Nora, Arias-Salgado Elena G., González-Manchón Consuelo, Ferrer Milagros, Larrucea Susana, Ayuso Matilde S., Parrilla Roberto. Disruption of the beta3 663-687 disulfide bridge confers constitutive activity to beta3 integrins. Blood. 2003 Jun 19;102(7):2491–2497. doi: 10.1182/blood-2003-01-0213. [DOI] [PubMed] [Google Scholar]
  3. Calvete J. J., Henschen A., González-Rodríguez J. Assignment of disulphide bonds in human platelet GPIIIa. A disulphide pattern for the beta-subunits of the integrin family. Biochem J. 1991 Feb 15;274(Pt 1):63–71. doi: 10.1042/bj2740063. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chen P., Melchior C., Brons N. H., Schlegel N., Caen J., Kieffer N. Probing conformational changes in the I-like domain and the cysteine-rich repeat of human beta 3 integrins following disulfide bond disruption by cysteine mutations: identification of cysteine 598 involved in alphaIIbbeta3 activation. J Biol Chem. 2001 Aug 15;276(42):38628–38635. doi: 10.1074/jbc.M105737200. [DOI] [PubMed] [Google Scholar]
  5. Deng W. P., Nickoloff J. A. Site-directed mutagenesis of virtually any plasmid by eliminating a unique site. Anal Biochem. 1992 Jan;200(1):81–88. doi: 10.1016/0003-2697(92)90280-k. [DOI] [PubMed] [Google Scholar]
  6. Essex David W., Li Mengru. Redox control of platelet aggregation. Biochemistry. 2003 Jan 14;42(1):129–136. doi: 10.1021/bi0205045. [DOI] [PubMed] [Google Scholar]
  7. Goto S., Salomon D. R., Ikeda Y., Ruggeri Z. M. Characterization of the unique mechanism mediating the shear-dependent binding of soluble von Willebrand factor to platelets. J Biol Chem. 1995 Oct 6;270(40):23352–23361. doi: 10.1074/jbc.270.40.23352. [DOI] [PubMed] [Google Scholar]
  8. Hughes P. E., O'Toole T. E., Ylänne J., Shattil S. J., Ginsberg M. H. The conserved membrane-proximal region of an integrin cytoplasmic domain specifies ligand binding affinity. J Biol Chem. 1995 May 26;270(21):12411–12417. doi: 10.1074/jbc.270.21.12411. [DOI] [PubMed] [Google Scholar]
  9. Hynes R. O. Integrins: versatility, modulation, and signaling in cell adhesion. Cell. 1992 Apr 3;69(1):11–25. doi: 10.1016/0092-8674(92)90115-s. [DOI] [PubMed] [Google Scholar]
  10. Kamata T., Irie A., Tokuhira M., Takada Y. Critical residues of integrin alphaIIb subunit for binding of alphaIIbbeta3 (glycoprotein IIb-IIIa) to fibrinogen and ligand-mimetic antibodies (PAC-1, OP-G2, and LJ-CP3). J Biol Chem. 1996 Aug 2;271(31):18610–18615. doi: 10.1074/jbc.271.31.18610. [DOI] [PubMed] [Google Scholar]
  11. Kouns W. C., Steiner B., Kunicki T. J., Moog S., Jutzi J., Jennings L. K., Cazenave J. P., Lanza F. Activation of the fibrinogen binding site on platelets isolated from a patient with the Strasbourg I variant of Glanzmann's thrombasthenia. Blood. 1994 Aug 15;84(4):1108–1115. [PubMed] [Google Scholar]
  12. O'Toole T. E., Loftus J. C., Du X. P., Glass A. A., Ruggeri Z. M., Shattil S. J., Plow E. F., Ginsberg M. H. Affinity modulation of the alpha IIb beta 3 integrin (platelet GPIIb-IIIa) is an intrinsic property of the receptor. Cell Regul. 1990 Nov;1(12):883–893. doi: 10.1091/mbc.1.12.883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Phillips D. R., Charo I. F., Parise L. V., Fitzgerald L. A. The platelet membrane glycoprotein IIb-IIIa complex. Blood. 1988 Apr;71(4):831–843. [PubMed] [Google Scholar]
  14. Puzon-McLaughlin W., Kamata T., Takada Y. Multiple discontinuous ligand-mimetic antibody binding sites define a ligand binding pocket in integrin alpha(IIb)beta(3). J Biol Chem. 2000 Mar 17;275(11):7795–7802. doi: 10.1074/jbc.275.11.7795. [DOI] [PubMed] [Google Scholar]
  15. Ruiz C., Liu C. Y., Sun Q. H., Sigaud-Fiks M., Fressinaud E., Muller J. Y., Nurden P., Nurden A. T., Newman P. J., Valentin N. A point mutation in the cysteine-rich domain of glycoprotein (GP) IIIa results in the expression of a GPIIb-IIIa (alphaIIbbeta3) integrin receptor locked in a high-affinity state and a Glanzmann thrombasthenia-like phenotype. Blood. 2001 Oct 15;98(8):2432–2441. doi: 10.1182/blood.v98.8.2432. [DOI] [PubMed] [Google Scholar]
  16. Shattil S. J., Kashiwagi H., Pampori N. Integrin signaling: the platelet paradigm. Blood. 1998 Apr 15;91(8):2645–2657. [PubMed] [Google Scholar]
  17. Sun Qi-Hong, Liu Chao-Yan, Wang Ronggang, Paddock Cathy, Newman Peter J. Disruption of the long-range GPIIIa Cys(5)-Cys(435) disulfide bond results in the production of constitutively active GPIIb-IIIa (alpha(IIb)beta(3)) integrin complexes. Blood. 2002 Sep 15;100(6):2094–2101. doi: 10.1182/blood-2002-02-0418. [DOI] [PubMed] [Google Scholar]
  18. Takagi J., Kamata T., Meredith J., Puzon-McLaughlin W., Takada Y. Changing ligand specificities of alphavbeta1 and alphavbeta3 integrins by swapping a short diverse sequence of the beta subunit. J Biol Chem. 1997 Aug 8;272(32):19794–19800. doi: 10.1074/jbc.272.32.19794. [DOI] [PubMed] [Google Scholar]
  19. Takagi Junichi, Springer Timothy A. Integrin activation and structural rearrangement. Immunol Rev. 2002 Aug;186:141–163. doi: 10.1034/j.1600-065x.2002.18613.x. [DOI] [PubMed] [Google Scholar]
  20. Tokuhira M., Handa M., Kamata T., Oda A., Katayama M., Tomiyama Y., Murata M., Kawai Y., Watanabe K., Ikeda Y. A novel regulatory epitope defined by a murine monoclonal antibody to the platelet GPIIb-IIIa complex (alpha IIb beta 3 integrin). Thromb Haemost. 1996 Dec;76(6):1038–1046. [PubMed] [Google Scholar]
  21. Wang R., Peterson J., Aster R. H., Newman P. J. Disruption of a long-range disulfide bond between residues Cys406 and Cys655 in glycoprotein IIIa does not affect the function of platelet glycoprotein IIb-IIIa. Blood. 1997 Aug 15;90(4):1718–1719. [PubMed] [Google Scholar]
  22. Xia Z., Wong T., Liu Q., Kasirer-Friede A., Brown E., Frojmovic M. M. Optimally functional fluorescein isothiocyanate-labelled fibrinogen for quantitative studies of binding to activated platelets and platelet aggregation. Br J Haematol. 1996 Apr;93(1):204–214. doi: 10.1046/j.1365-2141.1996.445980.x. [DOI] [PubMed] [Google Scholar]
  23. Xiong J. P., Stehle T., Diefenbach B., Zhang R., Dunker R., Scott D. L., Joachimiak A., Goodman S. L., Arnaout M. A. Crystal structure of the extracellular segment of integrin alpha Vbeta3. Science. 2001 Sep 6;294(5541):339–345. doi: 10.1126/science.1064535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Yan B., Hu D. D., Knowles S. K., Smith J. W. Probing chemical and conformational differences in the resting and active conformers of platelet integrin alpha(IIb)beta(3). J Biol Chem. 2000 Mar 10;275(10):7249–7260. doi: 10.1074/jbc.275.10.7249. [DOI] [PubMed] [Google Scholar]
  25. Yan B., Smith J. W. A redox site involved in integrin activation. J Biol Chem. 2000 Dec 22;275(51):39964–39972. doi: 10.1074/jbc.M007041200. [DOI] [PubMed] [Google Scholar]
  26. Yan B., Smith J. W. Mechanism of integrin activation by disulfide bond reduction. Biochemistry. 2001 Jul 31;40(30):8861–8867. doi: 10.1021/bi002902i. [DOI] [PubMed] [Google Scholar]
  27. Ylänne J., Hormia M., Järvinen M., Vartio T., Virtanen I. Platelet glycoprotein IIb/IIIa complex in cultured cells. Localization in focal adhesion sites in spreading HEL cells. Blood. 1988 Nov;72(5):1478–1486. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES