Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 Apr 1;379(Pt 1):183–190. doi: 10.1042/BJ20031664

Identification of the human mitochondrial S-adenosylmethionine transporter: bacterial expression, reconstitution, functional characterization and tissue distribution.

G Agrimi 1, M A Di Noia 1, C M T Marobbio 1, G Fiermonte 1, F M Lasorsa 1, F Palmieri 1
PMCID: PMC1224042  PMID: 14674884

Abstract

The mitochondrial carriers are a family of transport proteins that, with a few exceptions, are found in the inner membranes of mitochondria. They shuttle metabolites and cofactors through this membrane, and connect cytoplasmic functions with others in the matrix. SAM (S-adenosylmethionine) has to be transported into the mitochondria where it is converted into S-adenosylhomocysteine in methylation reactions of DNA, RNA and proteins. The transport of SAM has been investigated in rat liver mitochondria, but no protein has ever been associated with this activity. By using information derived from the phylogenetically distant yeast mitochondrial carrier for SAM and from related human expressed sequence tags, a human cDNA sequence was completed. This sequence was overexpressed in bacteria, and its product was purified, reconstituted into phospholipid vesicles and identified from its transport properties as the human mitochondrial SAM carrier (SAMC). Unlike the yeast orthologue, SAMC catalysed virtually only countertransport, exhibited a higher transport affinity for SAM and was strongly inhibited by tannic acid and Bromocresol Purple. SAMC was found to be expressed in all human tissues examined and was localized to the mitochondria. The physiological role of SAMC is probably to exchange cytosolic SAM for mitochondrial S-adenosylhomocysteine. This is the first report describing the identification and characterization of the human SAMC and its gene.

Full Text

The Full Text of this article is available as a PDF (187.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brix J., Rüdiger S., Bukau B., Schneider-Mergener J., Pfanner N. Distribution of binding sequences for the mitochondrial import receptors Tom20, Tom22, and Tom70 in a presequence-carrying preprotein and a non-cleavable preprotein. J Biol Chem. 1999 Jun 4;274(23):16522–16530. doi: 10.1074/jbc.274.23.16522. [DOI] [PubMed] [Google Scholar]
  2. Brulé H., Holmes W. M., Keith G., Giegé R., Florentz C. Effect of a mutation in the anticodon of human mitochondrial tRNAPro on its post-transcriptional modification pattern. Nucleic Acids Res. 1998 Jan 15;26(2):537–543. doi: 10.1093/nar/26.2.537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bustin S. A. Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J Mol Endocrinol. 2000 Oct;25(2):169–193. doi: 10.1677/jme.0.0250169. [DOI] [PubMed] [Google Scholar]
  4. Chia L. L., Morris H. P., Randerath K., Randerath E. Base composition studies on mitochondrial 4 S RNA from rat liver and Morris hepatomas 5123D and 7777. Biochim Biophys Acta. 1976 Feb 18;425(1):49–62. doi: 10.1016/0005-2787(76)90215-x. [DOI] [PubMed] [Google Scholar]
  5. Chiesa A., Rapizzi E., Tosello V., Pinton P., de Virgilio M., Fogarty K. E., Rizzuto R. Recombinant aequorin and green fluorescent protein as valuable tools in the study of cell signalling. Biochem J. 2001 Apr 1;355(Pt 1):1–12. doi: 10.1042/0264-6021:3550001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Davenport L., Taylor R. H., Dubin D. T. Comparison of human and hamster mitochondrial transfer RNA. Physical properties and methylation status. Biochim Biophys Acta. 1976 Oct 18;447(3):285–293. doi: 10.1016/0005-2787(76)90051-4. [DOI] [PubMed] [Google Scholar]
  7. Dubin D. T., Taylor R. H., Davenport L. W. Methylation status of 13S ribosomal RNA from hamster mitochondria: the presence of a novel riboside, N4-methylcytidine. Nucleic Acids Res. 1978 Nov;5(11):4385–4397. doi: 10.1093/nar/5.11.4385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dyall S. D., Koehler C. M., Delgadillo-Correa M. G., Bradley P. J., Plümper E., Leuenberger D., Turck C. W., Johnson P. J. Presence of a member of the mitochondrial carrier family in hydrogenosomes: conservation of membrane-targeting pathways between hydrogenosomes and mitochondria. Mol Cell Biol. 2000 Apr;20(7):2488–2497. doi: 10.1128/mcb.20.7.2488-2497.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Farooqui J. Z., Lee H. W., Kim S., Paik W. K. Studies on compartmentation of S-adenosyl-L-methionine in Saccharomyces cerevisiae and isolated rat hepatocytes. Biochim Biophys Acta. 1983 Jun 9;757(3):342–351. [PubMed] [Google Scholar]
  10. Fedoreyeva Larisa I., Vanyushin Boris F. N(6)-Adenine DNA-methyltransferase in wheat seedlings. FEBS Lett. 2002 Mar 13;514(2-3):305–308. doi: 10.1016/s0014-5793(02)02384-0. [DOI] [PubMed] [Google Scholar]
  11. Fiermonte G., Dolce V., Palmieri F. Expression in Escherichia coli, functional characterization, and tissue distribution of isoforms A and B of the phosphate carrier from bovine mitochondria. J Biol Chem. 1998 Aug 28;273(35):22782–22787. doi: 10.1074/jbc.273.35.22782. [DOI] [PubMed] [Google Scholar]
  12. Fiermonte G., Walker J. E., Palmieri F. Abundant bacterial expression and reconstitution of an intrinsic membrane-transport protein from bovine mitochondria. Biochem J. 1993 Aug 15;294(Pt 1):293–299. doi: 10.1042/bj2940293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Fiermonte Giuseppe, Dolce Vincenza, David Laura, Santorelli Filippo Maria, Dionisi-Vici Carlo, Palmieri Ferdinando, Walker John E. The mitochondrial ornithine transporter. Bacterial expression, reconstitution, functional characterization, and tissue distribution of two human isoforms. J Biol Chem. 2003 Jun 13;278(35):32778–32783. doi: 10.1074/jbc.M302317200. [DOI] [PubMed] [Google Scholar]
  14. Fiermonte Giuseppe, Palmieri Luigi, Todisco Simona, Agrimi Gennaro, Palmieri Ferdinando, Walker John E. Identification of the mitochondrial glutamate transporter. Bacterial expression, reconstitution, functional characterization, and tissue distribution of two human isoforms. J Biol Chem. 2002 Mar 15;277(22):19289–19294. doi: 10.1074/jbc.M201572200. [DOI] [PubMed] [Google Scholar]
  15. Helm M., Brulé H., Degoul F., Cepanec C., Leroux J. P., Giegé R., Florentz C. The presence of modified nucleotides is required for cloverleaf folding of a human mitochondrial tRNA. Nucleic Acids Res. 1998 Apr 1;26(7):1636–1643. doi: 10.1093/nar/26.7.1636. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Helm M., Giegé R., Florentz C. A Watson-Crick base-pair-disrupting methyl group (m1A9) is sufficient for cloverleaf folding of human mitochondrial tRNALys. Biochemistry. 1999 Oct 5;38(40):13338–13346. doi: 10.1021/bi991061g. [DOI] [PubMed] [Google Scholar]
  17. Horne D. W., Holloway R. S., Wagner C. Transport of S-adenosylmethionine in isolated rat liver mitochondria. Arch Biochem Biophys. 1997 Jul 15;343(2):201–206. doi: 10.1006/abbi.1997.0167. [DOI] [PubMed] [Google Scholar]
  18. Indiveri C., Iacobazzi V., Giangregorio N., Palmieri F. Bacterial overexpression, purification, and reconstitution of the carnitine/acylcarnitine carrier from rat liver mitochondria. Biochem Biophys Res Commun. 1998 Aug 28;249(3):589–594. doi: 10.1006/bbrc.1998.9197. [DOI] [PubMed] [Google Scholar]
  19. Kang D., Fujiwara T., Takeshige K. Ubiquinone biosynthesis by mitochondria, sonicated mitochondria, and mitoplasts of rat liver. J Biochem. 1992 Mar;111(3):371–375. doi: 10.1093/oxfordjournals.jbchem.a123764. [DOI] [PubMed] [Google Scholar]
  20. Khan M. S., Salim M., Maden B. E. Extensive homologies between the methylated nucleotide sequences in several vertebrate ribosomal ribonucleic acids. Biochem J. 1978 Mar 1;169(3):531–542. doi: 10.1042/bj1690531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Klagsbrun M. Differences in the methylation of transfer ribonucleic acid in vitro by the mitochondrial and cytoplasmic transfer ribonucleic acid methylases of HeLa cells. J Biol Chem. 1973 Apr 10;248(7):2606–2611. [PubMed] [Google Scholar]
  22. Kudriashova I. B., Kirnos M. D., Vaniushin B. F. DNK iad DNK-metilaznye aktivnosti iz mitokhondrii i iader zhivotnykh. Razlichnaia spetsifichnost' metilirovaniia DNK. Biokhimiia. 1976 Nov;41(11):1968–1977. [PubMed] [Google Scholar]
  23. Kumar Anuj, Agarwal Seema, Heyman John A., Matson Sandra, Heidtman Matthew, Piccirillo Stacy, Umansky Lara, Drawid Amar, Jansen Ronald, Liu Yang. Subcellular localization of the yeast proteome. Genes Dev. 2002 Mar 15;16(6):707–719. doi: 10.1101/gad.970902. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Marobbio C. M. T., Agrimi G., Lasorsa F. M., Palmieri F. Identification and functional reconstitution of yeast mitochondrial carrier for S-adenosylmethionine. EMBO J. 2003 Nov 17;22(22):5975–5982. doi: 10.1093/emboj/cdg574. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Marquet A., Bui B. T., Florentin D. Biosynthesis of biotin and lipoic acid. Vitam Horm. 2001;61:51–101. doi: 10.1016/s0083-6729(01)61002-1. [DOI] [PubMed] [Google Scholar]
  26. Morikawa T., Yasuno R., Wada H. Do mammalian cells synthesize lipoic acid? Identification of a mouse cDNA encoding a lipoic acid synthase located in mitochondria. FEBS Lett. 2001 Jun 1;498(1):16–21. doi: 10.1016/s0014-5793(01)02469-3. [DOI] [PubMed] [Google Scholar]
  27. Nijtmans L. G. J., Artal Sanz M., Grivell L. A., Coates P. J. The mitochondrial PHB complex: roles in mitochondrial respiratory complex assembly, ageing and degenerative disease. Cell Mol Life Sci. 2002 Jan;59(1):143–155. doi: 10.1007/s00018-002-8411-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Nijtmans L. G., de Jong L., Artal Sanz M., Coates P. J., Berden J. A., Back J. W., Muijsers A. O., van der Spek H., Grivell L. A. Prohibitins act as a membrane-bound chaperone for the stabilization of mitochondrial proteins. EMBO J. 2000 Jun 1;19(11):2444–2451. doi: 10.1093/emboj/19.11.2444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Palmieri F., Indiveri C., Bisaccia F., Iacobazzi V. Mitochondrial metabolite carrier proteins: purification, reconstitution, and transport studies. Methods Enzymol. 1995;260:349–369. doi: 10.1016/0076-6879(95)60150-3. [DOI] [PubMed] [Google Scholar]
  30. Palmieri L., Lasorsa F. M., Vozza A., Agrimi G., Fiermonte G., Runswick M. J., Walker J. E., Palmieri F. Identification and functions of new transporters in yeast mitochondria. Biochim Biophys Acta. 2000 Aug 15;1459(2-3):363–369. doi: 10.1016/s0005-2728(00)00173-0. [DOI] [PubMed] [Google Scholar]
  31. Palmieri L., Palmieri F., Runswick M. J., Walker J. E. Identification by bacterial expression and functional reconstitution of the yeast genomic sequence encoding the mitochondrial dicarboxylate carrier protein. FEBS Lett. 1996 Dec 16;399(3):299–302. doi: 10.1016/s0014-5793(96)01350-6. [DOI] [PubMed] [Google Scholar]
  32. Palmieri L., Pardo B., Lasorsa F. M., del Arco A., Kobayashi K., Iijima M., Runswick M. J., Walker J. E., Saheki T., Satrústegui J. Citrin and aralar1 are Ca(2+)-stimulated aspartate/glutamate transporters in mitochondria. EMBO J. 2001 Sep 17;20(18):5060–5069. doi: 10.1093/emboj/20.18.5060. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Palmieri L., Rottensteiner H., Girzalsky W., Scarcia P., Palmieri F., Erdmann R. Identification and functional reconstitution of the yeast peroxisomal adenine nucleotide transporter. EMBO J. 2001 Sep 17;20(18):5049–5059. doi: 10.1093/emboj/20.18.5049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Palmieri L., Runswick M. J., Fiermonte G., Walker J. E., Palmieri F. Yeast mitochondrial carriers: bacterial expression, biochemical identification and metabolic significance. J Bioenerg Biomembr. 2000 Feb;32(1):67–77. doi: 10.1023/a:1005564429242. [DOI] [PubMed] [Google Scholar]
  35. Park J. W., Ames B. N. 7-Methylguanine adducts in DNA are normally present at high levels and increase on aging: analysis by HPLC with electrochemical detection. Proc Natl Acad Sci U S A. 1988 Oct;85(20):7467–7470. doi: 10.1073/pnas.85.20.7467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Picault Nathalie, Palmieri Luigi, Pisano Isabella, Hodges Michael, Palmieri Ferdinando. Identification of a novel transporter for dicarboxylates and tricarboxylates in plant mitochondria. Bacterial expression, reconstitution, functional characterization, and tissue distribution. J Biol Chem. 2002 Apr 26;277(27):24204–24211. doi: 10.1074/jbc.M202702200. [DOI] [PubMed] [Google Scholar]
  37. Pintard Lionel, Bujnicki Janusz M., Lapeyre Bruno, Bonnerot Claire. MRM2 encodes a novel yeast mitochondrial 21S rRNA methyltransferase. EMBO J. 2002 Mar 1;21(5):1139–1147. doi: 10.1093/emboj/21.5.1139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Prince D. L., Kotin R. M., Dubin D. T. Evidence that the methylation inhibitor cycloleucine causes accumulation of a discrete ribosomal RNA precursor in hamster mitochondria. Mol Biol Rep. 1986;11(1):51–55. doi: 10.1007/BF00417596. [DOI] [PubMed] [Google Scholar]
  39. Rizzuto R., Pinton P., Carrington W., Fay F. S., Fogarty K. E., Lifshitz L. M., Tuft R. A., Pozzan T. Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science. 1998 Jun 12;280(5370):1763–1766. doi: 10.1126/science.280.5370.1763. [DOI] [PubMed] [Google Scholar]
  40. Saitou N., Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987 Jul;4(4):406–425. doi: 10.1093/oxfordjournals.molbev.a040454. [DOI] [PubMed] [Google Scholar]
  41. Santamaria Enrique, Avila Matías A., Latasa M. Ujue, Rubio Angel, Martin-Duce Antonio, Lu Shelly C., Mato José M., Corrales Fernando J. Functional proteomics of nonalcoholic steatohepatitis: mitochondrial proteins as targets of S-adenosylmethionine. Proc Natl Acad Sci U S A. 2003 Mar 11;100(6):3065–3070. doi: 10.1073/pnas.0536625100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Seidel-Rogol Bonnie L., McCulloch Vicki, Shadel Gerald S. Human mitochondrial transcription factor B1 methylates ribosomal RNA at a conserved stem-loop. Nat Genet. 2002 Dec 23;33(1):23–24. doi: 10.1038/ng1064. [DOI] [PubMed] [Google Scholar]
  43. Sekoguchi Ei, Sato Norihiro, Yasui Akihiro, Fukada Shinji, Nimura Yuji, Aburatani Hiroyuki, Ikeda Kyoji, Matsuura Akira. A novel mitochondrial carnitine-acylcarnitine translocase induced by partial hepatectomy and fasting. J Biol Chem. 2003 Jul 25;278(40):38796–38802. doi: 10.1074/jbc.M306372200. [DOI] [PubMed] [Google Scholar]
  44. Sirum-Connolly K., Mason T. L. Functional requirement of a site-specific ribose methylation in ribosomal RNA. Science. 1993 Dec 17;262(5141):1886–1889. doi: 10.1126/science.8266080. [DOI] [PubMed] [Google Scholar]
  45. Sullivan T. D., Kaneko Y. The maize brittle 1 gene encodes amyloplast membrane polypeptides. Planta. 1995;196(3):477–484. doi: 10.1007/BF00203647. [DOI] [PubMed] [Google Scholar]
  46. Sulo P., Martin N. C. Isolation and characterization of LIP5. A lipoate biosynthetic locus of Saccharomyces cerevisiae. J Biol Chem. 1993 Aug 15;268(23):17634–17639. [PubMed] [Google Scholar]
  47. Taniguchi M., Sugiyama T. Isolation, characterization and expression of cDNA clones encoding a mitochondrial malate translocator from Panicum miliaceum L. Plant Mol Biol. 1996 Jan;30(1):51–64. doi: 10.1007/BF00017802. [DOI] [PubMed] [Google Scholar]
  48. Trumpower B. L., Houser R. M., Olson R. E. Studies on ubiquinone. Demonstration of the total biosynthesis of ubiquinone-9 in rat liver mitochondria. J Biol Chem. 1974 May 25;249(10):3041–3048. [PubMed] [Google Scholar]
  49. Zara V., Palmieri F., Mahlke K., Pfanner N. The cleavable presequence is not essential for import and assembly of the phosphate carrier of mammalian mitochondria but enhances the specificity and efficiency of import. J Biol Chem. 1992 Jun 15;267(17):12077–12081. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES