Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 Apr 1;379(Pt 1):191–198. doi: 10.1042/BJ20031807

Relevance of NAC-2, an Na+-coupled citrate transporter, to life span, body size and fat content in Caenorhabditis elegans.

You-Jun Fei 1, Jin-Cai Liu 1, Katsuhisa Inoue 1, Lina Zhuang 1, Katsuya Miyake 1, Seiji Miyauchi 1, Vadivel Ganapathy 1
PMCID: PMC1224044  PMID: 14678010

Abstract

We have cloned and functionally characterized an Na+-coupled citrate transporter from Caenorhabditis elegans (ceNAC-2). This transporter shows significant sequence homology to Drosophila Indy and the mammalian Na+-coupled citrate transporter NaCT (now known as NaC2). When heterologously expressed in a mammalian cell line or in Xenopus oocytes, the cloned ceNAC-2 mediates the Na+-coupled transport of various intermediates of the citric acid cycle. However, it transports the tricarboxylate citrate more efficiently than dicarboxylates such as succinate, a feature different from that of ceNAC-1 (formerly known as ceNaDC1) and ceNAC-3 (formerly known as ceNaDC2). The transport process is electrogenic, as evidenced from the substrate-induced inward currents in oocytes expressing the transporter under voltage-clamp conditions. Expression studies using a reporter-gene fusion method in transgenic C. elegans show that the gene is expressed in the intestinal tract, the organ responsible for not only the digestion and absorption of nutrients but also for the storage of energy in this organism. Functional knockdown of the transporter by RNAi (RNA interference) not only leads to a significant increase in life span, but also causes a significant decrease in body size and fat content. The substrates of ceNAC-2 play a critical role in metabolic energy production and in the biosynthesis of cholesterol and fatty acids. The present studies suggest that the knockdown of these metabolic functions by RNAi is linked to an extension of life span and a decrease in fat content and body size.

Full Text

The Full Text of this article is available as a PDF (193.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashrafi Kaveh, Chang Francesca Y., Watts Jennifer L., Fraser Andrew G., Kamath Ravi S., Ahringer Julie, Ruvkun Gary. Genome-wide RNAi analysis of Caenorhabditis elegans fat regulatory genes. Nature. 2003 Jan 16;421(6920):268–272. doi: 10.1038/nature01279. [DOI] [PubMed] [Google Scholar]
  2. Chalfie M., Tu Y., Euskirchen G., Ward W. W., Prasher D. C. Green fluorescent protein as a marker for gene expression. Science. 1994 Feb 11;263(5148):802–805. doi: 10.1126/science.8303295. [DOI] [PubMed] [Google Scholar]
  3. Chen X. Z., Shayakul C., Berger U. V., Tian W., Hediger M. A. Characterization of a rat Na+-dicarboxylate cotransporter. J Biol Chem. 1998 Aug 14;273(33):20972–20981. doi: 10.1074/jbc.273.33.20972. [DOI] [PubMed] [Google Scholar]
  4. Chen X., Tsukaguchi H., Chen X. Z., Berger U. V., Hediger M. A. Molecular and functional analysis of SDCT2, a novel rat sodium-dependent dicarboxylate transporter. J Clin Invest. 1999 Apr;103(8):1159–1168. doi: 10.1172/JCI5392. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fei Y. J., Fujita T., Lapp D. F., Ganapathy V., Leibach F. H. Two oligopeptide transporters from Caenorhabditis elegans: molecular cloning and functional expression. Biochem J. 1998 Jun 1;332(Pt 2):565–572. doi: 10.1042/bj3320565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fei Y. J., Kanai Y., Nussberger S., Ganapathy V., Leibach F. H., Romero M. F., Singh S. K., Boron W. F., Hediger M. A. Expression cloning of a mammalian proton-coupled oligopeptide transporter. Nature. 1994 Apr 7;368(6471):563–566. doi: 10.1038/368563a0. [DOI] [PubMed] [Google Scholar]
  7. Fei Y. J., Romero M. F., Krause M., Liu J. C., Huang W., Ganapathy V., Leibach F. H. A novel H(+)-coupled oligopeptide transporter (OPT3) from Caenorhabditis elegans with a predominant function as a H(+) channel and an exclusive expression in neurons. J Biol Chem. 2000 Mar 31;275(13):9563–9571. doi: 10.1074/jbc.275.13.9563. [DOI] [PubMed] [Google Scholar]
  8. Fei You-Jun, Inoue Katsuhisa, Ganapathy Vadivel. Structural and functional characteristics of two sodium-coupled dicarboxylate transporters (ceNaDC1 and ceNaDC2) from Caenorhabditis elegans and their relevance to life span. J Biol Chem. 2002 Dec 11;278(8):6136–6144. doi: 10.1074/jbc.M208763200. [DOI] [PubMed] [Google Scholar]
  9. Fire A., Xu S., Montgomery M. K., Kostas S. A., Driver S. E., Mello C. C. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998 Feb 19;391(6669):806–811. doi: 10.1038/35888. [DOI] [PubMed] [Google Scholar]
  10. Greenspan P., Mayer E. P., Fowler S. D. Nile red: a selective fluorescent stain for intracellular lipid droplets. J Cell Biol. 1985 Mar;100(3):965–973. doi: 10.1083/jcb.100.3.965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Huang W., Wang H., Kekuda R., Fei Y. J., Friedrich A., Wang J., Conway S. J., Cameron R. S., Leibach F. H., Ganapathy V. Transport of N-acetylaspartate by the Na(+)-dependent high-affinity dicarboxylate transporter NaDC3 and its relevance to the expression of the transporter in the brain. J Pharmacol Exp Ther. 2000 Oct;295(1):392–403. [PubMed] [Google Scholar]
  12. Inoue Katsuhisa, Fei You-Jun, Huang Wei, Zhuang Lina, Chen Zhong, Ganapathy Vadivel. Functional identity of Drosophila melanogaster Indy as a cation-independent, electroneutral transporter for tricarboxylic acid-cycle intermediates. Biochem J. 2002 Oct 15;367(Pt 2):313–319. doi: 10.1042/BJ20021132. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Inoue Katsuhisa, Zhuang Lina, Ganapathy Vadivel. Human Na+ -coupled citrate transporter: primary structure, genomic organization, and transport function. Biochem Biophys Res Commun. 2002 Dec 6;299(3):465–471. doi: 10.1016/s0006-291x(02)02669-4. [DOI] [PubMed] [Google Scholar]
  14. Inoue Katsuhisa, Zhuang Lina, Maddox Dennis M., Smith Sylvia B., Ganapathy Vadivel. Human sodium-coupled citrate transporter, the orthologue of Drosophila Indy, as a novel target for lithium action. Biochem J. 2003 Aug 15;374(Pt 1):21–26. doi: 10.1042/BJ20030827. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Inoue Katsuhisa, Zhuang Lina, Maddox Dennis M., Smith Sylvia B., Ganapathy Vadivel. Structure, function, and expression pattern of a novel sodium-coupled citrate transporter (NaCT) cloned from mammalian brain. J Biol Chem. 2002 Aug 11;277(42):39469–39476. doi: 10.1074/jbc.M207072200. [DOI] [PubMed] [Google Scholar]
  16. KREBS H. A. Chemical composition of blood plasma and serum. Annu Rev Biochem. 1950;19:409–430. doi: 10.1146/annurev.bi.19.070150.002205. [DOI] [PubMed] [Google Scholar]
  17. Kekuda R., Wang H., Huang W., Pajor A. M., Leibach F. H., Devoe L. D., Prasad P. D., Ganapathy V. Primary structure and functional characteristics of a mammalian sodium-coupled high affinity dicarboxylate transporter. J Biol Chem. 1999 Feb 5;274(6):3422–3429. doi: 10.1074/jbc.274.6.3422. [DOI] [PubMed] [Google Scholar]
  18. Kenyon C., Chang J., Gensch E., Rudner A., Tabtiang R. A C. elegans mutant that lives twice as long as wild type. Nature. 1993 Dec 2;366(6454):461–464. doi: 10.1038/366461a0. [DOI] [PubMed] [Google Scholar]
  19. Knauf Felix, Rogina Blanka, Jiang Zhirong, Aronson Peter S., Helfand Stephen L. Functional characterization and immunolocalization of the transporter encoded by the life-extending gene Indy. Proc Natl Acad Sci U S A. 2002 Oct 21;99(22):14315–14319. doi: 10.1073/pnas.222531899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kramer J. M., French R. P., Park E. C., Johnson J. J. The Caenorhabditis elegans rol-6 gene, which interacts with the sqt-1 collagen gene to determine organismal morphology, encodes a collagen. Mol Cell Biol. 1990 May;10(5):2081–2089. doi: 10.1128/mcb.10.5.2081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lewis J. A., Fleming J. T. Basic culture methods. Methods Cell Biol. 1995;48:3–29. [PubMed] [Google Scholar]
  22. Mackenzie B., Fei Y. J., Ganapathy V., Leibach F. H. The human intestinal H+/oligopeptide cotransporter hPEPT1 transports differently-charged dipeptides with identical electrogenic properties. Biochim Biophys Acta. 1996 Oct 23;1284(2):125–128. doi: 10.1016/s0005-2736(96)00170-8. [DOI] [PubMed] [Google Scholar]
  23. McCulloch Diana, Gems David. Body size, insulin/IGF signaling and aging in the nematode Caenorhabditis elegans. Exp Gerontol. 2003 Jan-Feb;38(1-2):129–136. doi: 10.1016/s0531-5565(02)00147-x. [DOI] [PubMed] [Google Scholar]
  24. Mello C., Fire A. DNA transformation. Methods Cell Biol. 1995;48:451–482. [PubMed] [Google Scholar]
  25. Miller D. M., Shakes D. C. Immunofluorescence microscopy. Methods Cell Biol. 1995;48:365–394. [PubMed] [Google Scholar]
  26. NORDMANN J., NORDMANN R. Organic acids in blood and urine. Adv Clin Chem. 1961;4:53–120. doi: 10.1016/s0065-2423(08)60035-9. [DOI] [PubMed] [Google Scholar]
  27. Pajor A. M. Sequence and functional characterization of a renal sodium/dicarboxylate cotransporter. J Biol Chem. 1995 Mar 17;270(11):5779–5785. doi: 10.1074/jbc.270.11.5779. [DOI] [PubMed] [Google Scholar]
  28. Pajor A. M., Sun N. N. Molecular cloning, chromosomal organization, and functional characterization of a sodium-dicarboxylate cotransporter from mouse kidney. Am J Physiol Renal Physiol. 2000 Sep;279(3):F482–F490. doi: 10.1152/ajprenal.2000.279.3.F482. [DOI] [PubMed] [Google Scholar]
  29. Pajor A. M., Sun N. Functional differences between rabbit and human Na(+)-dicarboxylate cotransporters, NaDC-1 and hNaDC-1. Am J Physiol. 1996 Nov;271(5 Pt 2):F1093–F1099. doi: 10.1152/ajprenal.1996.271.5.F1093. [DOI] [PubMed] [Google Scholar]
  30. Rogina B., Reenan R. A., Nilsen S. P., Helfand S. L. Extended life-span conferred by cotransporter gene mutations in Drosophila. Science. 2000 Dec 15;290(5499):2137–2140. doi: 10.1126/science.290.5499.2137. [DOI] [PubMed] [Google Scholar]
  31. Sekine T., Cha S. H., Hosoyamada M., Kanai Y., Watanabe N., Furuta Y., Fukuda K., Igarashi T., Endou H. Cloning, functional characterization, and localization of a rat renal Na+-dicarboxylate transporter. Am J Physiol. 1998 Aug;275(2 Pt 2):F298–F305. doi: 10.1152/ajprenal.1998.275.2.F298. [DOI] [PubMed] [Google Scholar]
  32. Timmons L., Court D. L., Fire A. Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans. Gene. 2001 Jan 24;263(1-2):103–112. doi: 10.1016/s0378-1119(00)00579-5. [DOI] [PubMed] [Google Scholar]
  33. Wang H., Fei Y. J., Kekuda R., Yang-Feng T. L., Devoe L. D., Leibach F. H., Prasad P. D., Ganapathy V. Structure, function, and genomic organization of human Na(+)-dependent high-affinity dicarboxylate transporter. Am J Physiol Cell Physiol. 2000 May;278(5):C1019–C1030. doi: 10.1152/ajpcell.2000.278.5.C1019. [DOI] [PubMed] [Google Scholar]
  34. Wolkow C. A., Kimura K. D., Lee M. S., Ruvkun G. Regulation of C. elegans life-span by insulinlike signaling in the nervous system. Science. 2000 Oct 6;290(5489):147–150. doi: 10.1126/science.290.5489.147. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES