Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 Apr 1;379(Pt 1):133–139. doi: 10.1042/BJ20031559

Identification of glycogen synthase as a new substrate for stress-activated protein kinase 2b/p38beta.

Yvonne Kuma 1, David G Campbell 1, Ana Cuenda 1
PMCID: PMC1224046  PMID: 14680475

Abstract

The endogenous glycogen synthase in extracts from mouse skeletal muscle, liver and brain bound specifically to SAPK2b (stress-activated protein kinase 2b)/p38b, but not to other members of the group of SAPK/p38 kinases. Glycogen synthase was phosphorylated in vitro more efficiently by SAPK2b/p38b than by SAPK2a/p38a, SAPK3/p38g or SAPK4/p38d. SAPK2b/p38b phosphorylated glycogen synthase in vitro at residues Ser644, Ser652, Thr718 and Ser724, two of which (Ser644 and Ser652) are also phosphorylated by glycogen synthase kinase 3. Thr718 and Ser724 are novel sites not known to be phosphorylated by other protein kinases. Glycogen synthase becomes phosphorylated at Ser644 in response to osmotic shock; this phosphorylation is prevented by pretreatment of the cells with SB 203580, which inhibits SAPK2a/p38a and SAPK2b/p38b activity. In vitro, phosphorylation of glycogen synthase by SAPK2b/p38b alone had no significant effect on its activity, indicating that phosphorylation at residue Ser644 itself is insufficient to decrease glycogen synthase activity. However, after phosphorylation by SAPK2b/p38b, subsequent phosphorylation at Ser640 by glycogen synthase kinase 3 decreased the activity of glycogen synthase. This decrease was not observed when SAPK2b/p38b activity was blocked with SB 203580. These results suggest that SAPK2b/p38b may be a priming kinase that allows glycogen synthase kinase 3 to phosphorylate Ser640 and thereby inhibit glycogen synthase activity.

Full Text

The Full Text of this article is available as a PDF (245.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bain Jenny, McLauchlan Hilary, Elliott Matthew, Cohen Philip. The specificities of protein kinase inhibitors: an update. Biochem J. 2003 Apr 1;371(Pt 1):199–204. doi: 10.1042/BJ20021535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Biondi Ricardo M., Nebreda Angel R. Signalling specificity of Ser/Thr protein kinases through docking-site-mediated interactions. Biochem J. 2003 May 15;372(Pt 1):1–13. doi: 10.1042/BJ20021641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Buée-Scherrer Valérie, Goedert Michel. Phosphorylation of microtubule-associated protein tau by stress-activated protein kinases in intact cells. FEBS Lett. 2002 Mar 27;515(1-3):151–154. doi: 10.1016/s0014-5793(02)02460-2. [DOI] [PubMed] [Google Scholar]
  4. Cheung Peter C. F., Campbell David G., Nebreda Angel R., Cohen Philip. Feedback control of the protein kinase TAK1 by SAPK2a/p38alpha. EMBO J. 2003 Nov 3;22(21):5793–5805. doi: 10.1093/emboj/cdg552. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cohen P., Frame S. The renaissance of GSK3. Nat Rev Mol Cell Biol. 2001 Oct;2(10):769–776. doi: 10.1038/35096075. [DOI] [PubMed] [Google Scholar]
  6. Cohen P. The search for physiological substrates of MAP and SAP kinases in mammalian cells. Trends Cell Biol. 1997 Sep;7(9):353–361. doi: 10.1016/S0962-8924(97)01105-7. [DOI] [PubMed] [Google Scholar]
  7. Cohen P., Yellowlees D., Aitken A., Donella-Deana A., Hemmings B. A., Parker P. J. Separation and characterisation of glycogen synthase kinase 3, glycogen synthase kinase 4 and glycogen synthase kinase 5 from rabbit skeletal muscle. Eur J Biochem. 1982 May;124(1):21–35. doi: 10.1111/j.1432-1033.1982.tb05902.x. [DOI] [PubMed] [Google Scholar]
  8. Cuenda A., Cohen P., Buée-Scherrer V., Goedert M. Activation of stress-activated protein kinase-3 (SAPK3) by cytokines and cellular stresses is mediated via SAPKK3 (MKK6); comparison of the specificities of SAPK3 and SAPK2 (RK/p38). EMBO J. 1997 Jan 15;16(2):295–305. doi: 10.1093/emboj/16.2.295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cuenda A., Cohen P. Stress-activated protein kinase-2/p38 and a rapamycin-sensitive pathway are required for C2C12 myogenesis. J Biol Chem. 1999 Feb 12;274(7):4341–4346. doi: 10.1074/jbc.274.7.4341. [DOI] [PubMed] [Google Scholar]
  10. Cuenda A., Rouse J., Doza Y. N., Meier R., Cohen P., Gallagher T. F., Young P. R., Lee J. C. SB 203580 is a specific inhibitor of a MAP kinase homologue which is stimulated by cellular stresses and interleukin-1. FEBS Lett. 1995 May 8;364(2):229–233. doi: 10.1016/0014-5793(95)00357-f. [DOI] [PubMed] [Google Scholar]
  11. Davies S. P., Reddy H., Caivano M., Cohen P. Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem J. 2000 Oct 1;351(Pt 1):95–105. doi: 10.1042/0264-6021:3510095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. DePaoli-Roach A. A., Ahmad Z., Camici M., Lawrence J. C., Jr, Roach P. J. Multiple phosphorylation of rabbit skeletal muscle glycogen synthase. Evidence for interactions among phosphorylation sites and the resolution of electrophoretically distinct forms of the subunit. J Biol Chem. 1983 Sep 10;258(17):10702–10709. [PubMed] [Google Scholar]
  13. Eyers P. A., Craxton M., Morrice N., Cohen P., Goedert M. Conversion of SB 203580-insensitive MAP kinase family members to drug-sensitive forms by a single amino-acid substitution. Chem Biol. 1998 Jun;5(6):321–328. doi: 10.1016/s1074-5521(98)90170-3. [DOI] [PubMed] [Google Scholar]
  14. Goedert M., Cuenda A., Craxton M., Jakes R., Cohen P. Activation of the novel stress-activated protein kinase SAPK4 by cytokines and cellular stresses is mediated by SKK3 (MKK6); comparison of its substrate specificity with that of other SAP kinases. EMBO J. 1997 Jun 16;16(12):3563–3571. doi: 10.1093/emboj/16.12.3563. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Goedert M., Hasegawa M., Jakes R., Lawler S., Cuenda A., Cohen P. Phosphorylation of microtubule-associated protein tau by stress-activated protein kinases. FEBS Lett. 1997 Jun 2;409(1):57–62. doi: 10.1016/s0014-5793(97)00483-3. [DOI] [PubMed] [Google Scholar]
  16. Hasegawa M., Cuenda A., Spillantini M. G., Thomas G. M., Buée-Scherrer V., Cohen P., Goedert M. Stress-activated protein kinase-3 interacts with the PDZ domain of alpha1-syntrophin. A mechanism for specific substrate recognition. J Biol Chem. 1999 Apr 30;274(18):12626–12631. doi: 10.1074/jbc.274.18.12626. [DOI] [PubMed] [Google Scholar]
  17. Haydon Claire E., Watt Peter W., Morrice Nick, Knebel Axel, Gaestel Matthias, Cohen Philip. Identification of a phosphorylation site on skeletal muscle myosin light chain kinase that becomes phosphorylated during muscle contraction. Arch Biochem Biophys. 2002 Jan 15;397(2):224–231. doi: 10.1006/abbi.2001.2625. [DOI] [PubMed] [Google Scholar]
  18. Højlund Kurt, Staehr Peter, Hansen Bo Falck, Green Kevin A., Hardie D. Grahame, Richter Erik A., Beck-Nielsen Henning, Wojtaszewski Jørgen F. P. Increased phosphorylation of skeletal muscle glycogen synthase at NH2-terminal sites during physiological hyperinsulinemia in type 2 diabetes. Diabetes. 2003 Jun;52(6):1393–1402. doi: 10.2337/diabetes.52.6.1393. [DOI] [PubMed] [Google Scholar]
  19. Knebel A., Morrice N., Cohen P. A novel method to identify protein kinase substrates: eEF2 kinase is phosphorylated and inhibited by SAPK4/p38delta. EMBO J. 2001 Aug 15;20(16):4360–4369. doi: 10.1093/emboj/20.16.4360. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Knebel Axel, Haydon Claire E., Morrice Nick, Cohen Philip. Stress-induced regulation of eukaryotic elongation factor 2 kinase by SB 203580-sensitive and -insensitive pathways. Biochem J. 2002 Oct 15;367(Pt 2):525–532. doi: 10.1042/BJ20020916. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kyriakis J. M., Avruch J. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev. 2001 Apr;81(2):807–869. doi: 10.1152/physrev.2001.81.2.807. [DOI] [PubMed] [Google Scholar]
  22. Lawrence J. C., Jr, Roach P. J. New insights into the role and mechanism of glycogen synthase activation by insulin. Diabetes. 1997 Apr;46(4):541–547. doi: 10.2337/diab.46.4.541. [DOI] [PubMed] [Google Scholar]
  23. Mody Nimesh, Campbell David G., Morrice Nick, Peggie Mark, Cohen Philip. An analysis of the phosphorylation and activation of extracellular-signal-regulated protein kinase 5 (ERK5) by mitogen-activated protein kinase kinase 5 (MKK5) in vitro. Biochem J. 2003 Jun 1;372(Pt 2):567–575. doi: 10.1042/BJ20030193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Nakielny S., Campbell D. G., Cohen P. The molecular mechanism by which adrenalin inhibits glycogen synthesis. Eur J Biochem. 1991 Aug 1;199(3):713–722. doi: 10.1111/j.1432-1033.1991.tb16175.x. [DOI] [PubMed] [Google Scholar]
  25. Nielsen J. N., Richter E. A. Regulation of glycogen synthase in skeletal muscle during exercise. Acta Physiol Scand. 2003 Aug;178(4):309–319. doi: 10.1046/j.1365-201X.2003.01165.x. [DOI] [PubMed] [Google Scholar]
  26. Nimmo H. G., Cohen P. Glycogen synthetase kinase 2 (GSK 2); the identification of a new protein kinase in skeletal muscle. FEBS Lett. 1974 Oct 1;47(1):162–166. doi: 10.1016/0014-5793(74)80450-3. [DOI] [PubMed] [Google Scholar]
  27. Nimmo H. G., Proud C. G., Cohen P. The purification and properties of rabbit skeletal muscle glycogen synthase. Eur J Biochem. 1976 Sep;68(1):21–30. doi: 10.1111/j.1432-1033.1976.tb10761.x. [DOI] [PubMed] [Google Scholar]
  28. Parker C. G., Hunt J., Diener K., McGinley M., Soriano B., Keesler G. A., Bray J., Yao Z., Wang X. S., Kohno T. Identification of stathmin as a novel substrate for p38 delta. Biochem Biophys Res Commun. 1998 Aug 28;249(3):791–796. doi: 10.1006/bbrc.1998.9250. [DOI] [PubMed] [Google Scholar]
  29. Picton C., Aitken A., Bilham T., Cohen P. Multisite phosphorylation of glycogen synthase from rabbit skeletal muscle. Organisation of the seven sites in the polypeptide chain. Eur J Biochem. 1982 May;124(1):37–45. doi: 10.1111/j.1432-1033.1982.tb05903.x. [DOI] [PubMed] [Google Scholar]
  30. Sakamoto Kei, Goodyear Laurie J. Invited review: intracellular signaling in contracting skeletal muscle. J Appl Physiol (1985) 2002 Jul;93(1):369–383. doi: 10.1152/japplphysiol.00167.2002. [DOI] [PubMed] [Google Scholar]
  31. Skurat A. V., Roach P. J. Multiple mechanisms for the phosphorylation of C-terminal regulatory sites in rabbit muscle glycogen synthase expressed in COS cells. Biochem J. 1996 Jan 1;313(Pt 1):45–50. doi: 10.1042/bj3130045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Skurat A. V., Roach P. J. Phosphorylation of sites 3a and 3b (Ser640 and Ser644) in the control of rabbit muscle glycogen synthase. J Biol Chem. 1995 May 26;270(21):12491–12497. doi: 10.1074/jbc.270.21.12491. [DOI] [PubMed] [Google Scholar]
  33. Skurat A. V., Wang Y., Roach P. J. Rabbit skeletal muscle glycogen synthase expressed in COS cells. Identification of regulatory phosphorylation sites. J Biol Chem. 1994 Oct 14;269(41):25534–25542. [PubMed] [Google Scholar]
  34. Zhang W., DePaoli-Roach A. A., Roach P. J. Mechanisms of multisite phosphorylation and inactivation of rabbit muscle glycogen synthase. Arch Biochem Biophys. 1993 Jul;304(1):219–225. doi: 10.1006/abbi.1993.1342. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES