Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 Apr 1;379(Pt 1):31–38. doi: 10.1042/BJ20030884

Proline residues in transmembrane segment IV are critical for activity, expression and targeting of the Na+/H+ exchanger isoform 1.

Emily R Slepkov 1, Signy Chow 1, M Joanne Lemieux 1, Larry Fliegel 1
PMCID: PMC1224048  PMID: 14680478

Abstract

NHE1 (Na+/H+ exchanger isoform 1) is a ubiquitously expressed integral membrane protein that regulates intracellular pH in mammalian cells. Proline residues within transmembrane segments have unusual properties, acting as helix breakers and increasing flexibility of membrane segments, since they lack an amide hydrogen. We examined the importance of three conserved proline residues in TM IV (transmembrane segment IV) of NHE1. Pro167 and Pro168 were mutated to Gly, Ala or Cys, and Pro178 was mutated to Ala. Pro168 and Pro178 mutant proteins were expressed at levels similar to wild-type NHE1 and were targeted to the plasma membrane. However, the mutants P167G (Pro167-->Gly), P167A and P167C were expressed at lower levels compared with wild-type NHE1, and a significant portion of P167G and P167C were retained intracellularly, possibly indicating induced changes in the structure of TM IV. P167G, P167C, P168A and P168C mutations abolished NHE activity, and P167A and P168G mutations caused markedly decreased activity. In contrast, the activity of the P178A mutant was not significantly different from that of wild-type NHE1. The results indicate that both Pro167 and Pro168 in TM IV of NHE1 are required for normal NHE activity. In addition, mutation of Pro167 affects the expression and membrane targeting of the exchanger. Thus both Pro167 and Pro168 are strictly required for NHE function and may play critical roles in the structure of TM IV of the NHE.

Full Text

The Full Text of this article is available as a PDF (209.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abramson Jeff, Smirnova Irina, Kasho Vladimir, Verner Gillian, Kaback H. Ronald, Iwata So. Structure and mechanism of the lactose permease of Escherichia coli. Science. 2003 Aug 1;301(5633):610–615. doi: 10.1126/science.1088196. [DOI] [PubMed] [Google Scholar]
  2. Baird N. R., Orlowski J., Szabó E. Z., Zaun H. C., Schultheis P. J., Menon A. G., Shull G. E. Molecular cloning, genomic organization, and functional expression of Na+/H+ exchanger isoform 5 (NHE5) from human brain. J Biol Chem. 1999 Feb 12;274(7):4377–4382. doi: 10.1074/jbc.274.7.4377. [DOI] [PubMed] [Google Scholar]
  3. Barlow D. J., Thornton J. M. Helix geometry in proteins. J Mol Biol. 1988 Jun 5;201(3):601–619. doi: 10.1016/0022-2836(88)90641-9. [DOI] [PubMed] [Google Scholar]
  4. Blaber M., Zhang X. J., Matthews B. W. Structural basis of amino acid alpha helix propensity. Science. 1993 Jun 11;260(5114):1637–1640. doi: 10.1126/science.8503008. [DOI] [PubMed] [Google Scholar]
  5. Brandl C. J., Deber C. M. Hypothesis about the function of membrane-buried proline residues in transport proteins. Proc Natl Acad Sci U S A. 1986 Feb;83(4):917–921. doi: 10.1073/pnas.83.4.917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brant S. R., Yun C. H., Donowitz M., Tse C. M. Cloning, tissue distribution, and functional analysis of the human Na+/N+ exchanger isoform, NHE3. Am J Physiol. 1995 Jul;269(1 Pt 1):C198–C206. doi: 10.1152/ajpcell.1995.269.1.C198. [DOI] [PubMed] [Google Scholar]
  7. Bross P., Corydon T. J., Andresen B. S., Jørgensen M. M., Bolund L., Gregersen N. Protein misfolding and degradation in genetic diseases. Hum Mutat. 1999;14(3):186–198. doi: 10.1002/(SICI)1098-1004(1999)14:3<186::AID-HUMU2>3.0.CO;2-J. [DOI] [PubMed] [Google Scholar]
  8. Chou P. Y., Fasman G. D. Prediction of the secondary structure of proteins from their amino acid sequence. Adv Enzymol Relat Areas Mol Biol. 1978;47:45–148. doi: 10.1002/9780470122921.ch2. [DOI] [PubMed] [Google Scholar]
  9. Consler T. G., Tsolas O., Kaback H. R. Role of proline residues in the structure and function of a membrane transport protein. Biochemistry. 1991 Feb 5;30(5):1291–1298. doi: 10.1021/bi00219a019. [DOI] [PubMed] [Google Scholar]
  10. Cordes Frank S., Bright Joanne N., Sansom Mark S. P. Proline-induced distortions of transmembrane helices. J Mol Biol. 2002 Nov 8;323(5):951–960. doi: 10.1016/s0022-2836(02)01006-9. [DOI] [PubMed] [Google Scholar]
  11. Counillon L., Franchi A., Pouysségur J. A point mutation of the Na+/H+ exchanger gene (NHE1) and amplification of the mutated allele confer amiloride resistance upon chronic acidosis. Proc Natl Acad Sci U S A. 1993 May 15;90(10):4508–4512. doi: 10.1073/pnas.90.10.4508. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Counillon L., Noël J., Reithmeier R. A., Pouysségur J. Random mutagenesis reveals a novel site involved in inhibitor interaction within the fourth transmembrane segment of the Na+/H+ exchanger-1. Biochemistry. 1997 Mar 11;36(10):2951–2959. doi: 10.1021/bi9615405. [DOI] [PubMed] [Google Scholar]
  13. Counillon L., Pouysségur J., Reithmeier R. A. The Na+/H+ exchanger NHE-1 possesses N- and O-linked glycosylation restricted to the first N-terminal extracellular domain. Biochemistry. 1994 Aug 30;33(34):10463–10469. doi: 10.1021/bi00200a030. [DOI] [PubMed] [Google Scholar]
  14. Fliegel L. Regulation of myocardial Na+/H+ exchanger activity. Basic Res Cardiol. 2001 Jul;96(4):301–305. doi: 10.1007/s003950170036. [DOI] [PubMed] [Google Scholar]
  15. Ghishan F. K., Knobel S. M., Summar M. Molecular cloning, sequencing, chromosomal localization, and tissue distribution of the human Na+/H+ exchanger (SLC9A2). Genomics. 1995 Nov 1;30(1):25–30. doi: 10.1006/geno.1995.0004. [DOI] [PubMed] [Google Scholar]
  16. Goyal Sunita, Vanden Heuvel Gregory, Aronson Peter S. Renal expression of novel Na+/H+ exchanger isoform NHE8. Am J Physiol Renal Physiol. 2002 Oct 29;284(3):F467–F473. doi: 10.1152/ajprenal.00352.2002. [DOI] [PubMed] [Google Scholar]
  17. Gregersen N., Bross P., Andrese B. S., Pedersen C. B., Corydon T. J., Bolund L. The role of chaperone-assisted folding and quality control in inborn errors of metabolism: protein folding disorders. J Inherit Metab Dis. 2001 Apr;24(2):189–212. doi: 10.1023/a:1010319001722. [DOI] [PubMed] [Google Scholar]
  18. Grinstein S., Rotin D., Mason M. J. Na+/H+ exchange and growth factor-induced cytosolic pH changes. Role in cellular proliferation. Biochim Biophys Acta. 1989 Jan 18;988(1):73–97. doi: 10.1016/0304-4157(89)90004-x. [DOI] [PubMed] [Google Scholar]
  19. Hong S., Ryu K. S., Oh M. S., Ji I., Ji T. H. Roles of transmembrane prolines and proline-induced kinks of the lutropin/choriogonadotropin receptor. J Biol Chem. 1997 Feb 14;272(7):4166–4171. doi: 10.1074/jbc.272.7.4166. [DOI] [PubMed] [Google Scholar]
  20. Huang Yafei, Lemieux M. Joanne, Song Jinmei, Auer Manfred, Wang Da-Neng. Structure and mechanism of the glycerol-3-phosphate transporter from Escherichia coli. Science. 2003 Aug 1;301(5633):616–620. doi: 10.1126/science.1087619. [DOI] [PubMed] [Google Scholar]
  21. Kabsch W., Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983 Dec;22(12):2577–2637. doi: 10.1002/bip.360221211. [DOI] [PubMed] [Google Scholar]
  22. Karplus K., Barrett C., Hughey R. Hidden Markov models for detecting remote protein homologies. Bioinformatics. 1998;14(10):846–856. doi: 10.1093/bioinformatics/14.10.846. [DOI] [PubMed] [Google Scholar]
  23. Lin Z., Itokawa M., Uhl G. R. Dopamine transporter proline mutations influence dopamine uptake, cocaine analog recognition, and expression. FASEB J. 2000 Apr;14(5):715–728. doi: 10.1096/fasebj.14.5.715. [DOI] [PubMed] [Google Scholar]
  24. Lolkema J. S., Püttner I. B., Kaback H. R. Site-directed mutagenesis of Pro327 in the lac permease of Escherichia coli. Biochemistry. 1988 Nov 1;27(22):8307–8310. doi: 10.1021/bi00422a003. [DOI] [PubMed] [Google Scholar]
  25. Lu H., Marti T., Booth P. J. Proline residues in transmembrane alpha helices affect the folding of bacteriorhodopsin. J Mol Biol. 2001 Apr 27;308(2):437–446. doi: 10.1006/jmbi.2001.4605. [DOI] [PubMed] [Google Scholar]
  26. Michalak M., Fliegel L., Wlasichuk K. Isolation and characterization of calcium binding glycoproteins of cardiac sarcolemmal vesicles. J Biol Chem. 1990 Apr 5;265(10):5869–5874. [PubMed] [Google Scholar]
  27. Murtazina R., Booth B. J., Bullis B. L., Singh D. N., Fliegel L. Functional analysis of polar amino-acid residues in membrane associated regions of the NHE1 isoform of the mammalian Na+/H+ exchanger. Eur J Biochem. 2001 Sep;268(17):4674–4685. doi: 10.1046/j.1432-1327.2001.02391.x. [DOI] [PubMed] [Google Scholar]
  28. Nehrke Keith, Melvin James E. The NHX family of Na+-H+ exchangers in Caenorhabditis elegans. J Biol Chem. 2002 May 20;277(32):29036–29044. doi: 10.1074/jbc.M203200200. [DOI] [PubMed] [Google Scholar]
  29. Numata M., Orlowski J. Molecular cloning and characterization of a novel (Na+,K+)/H+ exchanger localized to the trans-Golgi network. J Biol Chem. 2001 Feb 26;276(20):17387–17394. doi: 10.1074/jbc.M101319200. [DOI] [PubMed] [Google Scholar]
  30. Numata M., Petrecca K., Lake N., Orlowski J. Identification of a mitochondrial Na+/H+ exchanger. J Biol Chem. 1998 Mar 20;273(12):6951–6959. doi: 10.1074/jbc.273.12.6951. [DOI] [PubMed] [Google Scholar]
  31. Orlowski J., Grinstein S. Na+/H+ exchangers of mammalian cells. J Biol Chem. 1997 Sep 5;272(36):22373–22376. doi: 10.1074/jbc.272.36.22373. [DOI] [PubMed] [Google Scholar]
  32. Orlowski J., Kandasamy R. A., Shull G. E. Molecular cloning of putative members of the Na/H exchanger gene family. cDNA cloning, deduced amino acid sequence, and mRNA tissue expression of the rat Na/H exchanger NHE-1 and two structurally related proteins. J Biol Chem. 1992 May 5;267(13):9331–9339. [PubMed] [Google Scholar]
  33. Pouysségur J., Sardet C., Franchi A., L'Allemain G., Paris S. A specific mutation abolishing Na+/H+ antiport activity in hamster fibroblasts precludes growth at neutral and acidic pH. Proc Natl Acad Sci U S A. 1984 Aug;81(15):4833–4837. doi: 10.1073/pnas.81.15.4833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Sansom M. S. Proline residues in transmembrane helices of channel and transport proteins: a molecular modelling study. Protein Eng. 1992 Jan;5(1):53–60. doi: 10.1093/protein/5.1.53. [DOI] [PubMed] [Google Scholar]
  35. Sardet C., Franchi A., Pouysségur J. Molecular cloning, primary structure, and expression of the human growth factor-activatable Na+/H+ antiporter. Cell. 1989 Jan 27;56(2):271–280. doi: 10.1016/0092-8674(89)90901-x. [DOI] [PubMed] [Google Scholar]
  36. Seibert F. S., Loo T. W., Clarke D. M., Riordan J. R. Cystic fibrosis: channel, catalytic, and folding properties of the CFTR protein. J Bioenerg Biomembr. 1997 Oct;29(5):429–442. doi: 10.1023/a:1022478822214. [DOI] [PubMed] [Google Scholar]
  37. Shelden M. C., Loughlin P., Tierney M. L., Howitt S. M. Proline residues in two tightly coupled helices of the sulphate transporter, SHST1, are important for sulphate transport. Biochem J. 2001 Jun 1;356(Pt 2):589–594. doi: 10.1042/0264-6021:3560589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Sterling D., Casey J. R. Transport activity of AE3 chloride/bicarbonate anion-exchange proteins and their regulation by intracellular pH. Biochem J. 1999 Nov 15;344(Pt 1):221–229. [PMC free article] [PubMed] [Google Scholar]
  39. Tamori Y., Hashiramoto M., Clark A. E., Mori H., Muraoka A., Kadowaki T., Holman G. D., Kasuga M. Substitution at Pro385 of GLUT1 perturbs the glucose transport function by reducing conformational flexibility. J Biol Chem. 1994 Jan 28;269(4):2982–2986. [PubMed] [Google Scholar]
  40. Touret N., Poujeol P., Counillon L. Second-site revertants of a low-sodium-affinity mutant of the Na+/H+ exchanger reveal the participation of TM4 into a highly constrained sodium-binding site. Biochemistry. 2001 Apr 24;40(16):5095–5101. doi: 10.1021/bi0025464. [DOI] [PubMed] [Google Scholar]
  41. Tse C. M., Ma A. I., Yang V. W., Watson A. J., Levine S., Montrose M. H., Potter J., Sardet C., Pouyssegur J., Donowitz M. Molecular cloning and expression of a cDNA encoding the rabbit ileal villus cell basolateral membrane Na+/H+ exchanger. EMBO J. 1991 Aug;10(8):1957–1967. doi: 10.1002/j.1460-2075.1991.tb07725.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Vilsen B., Andersen J. P., Clarke D. M., MacLennan D. H. Functional consequences of proline mutations in the cytoplasmic and transmembrane sectors of the Ca2(+)-ATPase of sarcoplasmic reticulum. J Biol Chem. 1989 Dec 15;264(35):21024–21030. [PubMed] [Google Scholar]
  43. Wakabayashi S., Pang T., Su X., Shigekawa M. A novel topology model of the human Na(+)/H(+) exchanger isoform 1. J Biol Chem. 2000 Mar 17;275(11):7942–7949. doi: 10.1074/jbc.275.11.7942. [DOI] [PubMed] [Google Scholar]
  44. Wellner M., Monden I., Mueckler M. M., Keller K. Functional consequences of proline mutations in the putative transmembrane segments 6 and 10 of the glucose transporter GLUT1. Eur J Biochem. 1995 Jan 15;227(1-2):454–458. doi: 10.1111/j.1432-1033.1995.tb20409.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES