Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 Apr 1;379(Pt 1):89–97. doi: 10.1042/BJ20031730

Thrombospondin-1 mediates distal tubule hypertrophy induced by glycated albumin.

Yu-Lin Yang 1, Lea-Yea Chuang 1, Jinn-Yuh Guh 1, Shu-Fen Liu 1, Min-Yuan Hung 1, Tung-Nan Liao 1, Yu-Lun Huang 1
PMCID: PMC1224049  PMID: 14683523

Abstract

Diabetic nephropathy is characterized by early hypertrophy in both glomerular and tubuloepithelial elements. However, no studies to date have established a direct causal link between hyperglycaemia and renal hypertrophy. Our previous studies have found that high glucose does not induce cellular hypertrophy or expression of TGF-beta1 (transforming growth factor-beta1) in distal renal tubule cells [Yang, Guh, Yang, Lai, Tsai, Hung, Chang and Chuang (1998) J. Am. Soc. Nephrol. 9, 182-193]. In the present study, we used AGEs (advanced glycation end-products) to mimic long-term hyperglycaemia. Similar to glucose, AGEs did not induce TGF-beta1 mRNA in distal renal tubule cells [MDCK (Madin-Darby canine kidney) cells]; however, TGF-beta1 bioactivity was increased significantly. This result indicated post-translational regulation. Since TSP-1 (thrombospondin-1) has been demonstrated to activate latent TGF-beta1 in a variety of systems, the following experiments were performed. We found that AGEs dose-dependently increased both intracellular and extracellular levels of TSP-1. Purified TSP-1, like AGEs, increased the cellular protein content. Furthermore, anti-TSP-1 neutralizing antibodies attenuated the AGE-induced increase in TGF-beta1 bioactivity and hypertrophy. Thus TSP-1 might mediate AGE-induced distal renal tubule hypertrophy. In addition, we observed several putative transcription factor binding sites in the TSP-1 promoter, including those for AP-1 (activator protein-1), CREB (cAMP response element binding protein), NF-kappaB (nuclear factor-kappaB), SRF (serum response factor) and HSF (heat-shock factor), by sequence mapping. We used an enhancer assay to screen possible transcription factors involved. We showed that AP-1 and CREB were specifically induced by AGEs; furthermore, TFD (transcription factor decoy) for AP-1 could attenuate the AGE-induced increases in TSP-1 levels and cellular hypertrophy. Thus regulation of TSP-1 might be critical for hyperglycaemic distal tubule hypertrophy. Furthermore, TSP-1 TFD might be a potential approach to ameliorate diabetic renal hypertrophy.

Full Text

The Full Text of this article is available as a PDF (306.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adderley S. R., Fitzgerald D. J. Oxidative damage of cardiomyocytes is limited by extracellular regulated kinases 1/2-mediated induction of cyclooxygenase-2. J Biol Chem. 1999 Feb 19;274(8):5038–5046. doi: 10.1074/jbc.274.8.5038. [DOI] [PubMed] [Google Scholar]
  2. Border W. A., Okuda S., Languino L. R., Sporn M. B., Ruoslahti E. Suppression of experimental glomerulonephritis by antiserum against transforming growth factor beta 1. Nature. 1990 Jul 26;346(6282):371–374. doi: 10.1038/346371a0. [DOI] [PubMed] [Google Scholar]
  3. Bornstein P., Sage E. H. Thrombospondins. Methods Enzymol. 1994;245:62–85. doi: 10.1016/0076-6879(94)45006-4. [DOI] [PubMed] [Google Scholar]
  4. Brownlee M., Cerami A., Vlassara H. Advanced glycosylation end products in tissue and the biochemical basis of diabetic complications. N Engl J Med. 1988 May 19;318(20):1315–1321. doi: 10.1056/NEJM198805193182007. [DOI] [PubMed] [Google Scholar]
  5. Chow S., Patel H., Hedley D. W. Measurement of MAP kinase activation by flow cytometry using phospho-specific antibodies to MEK and ERK: potential for pharmacodynamic monitoring of signal transduction inhibitors. Cytometry. 2001 Apr 15;46(2):72–78. doi: 10.1002/cyto.1067. [DOI] [PubMed] [Google Scholar]
  6. Dellow W. J., Chambers S. T., Lever M., Lunt H., Robson R. A. Elevated glycine betaine excretion in diabetes mellitus patients is associated with proximal tubular dysfunction and hyperglycemia. Diabetes Res Clin Pract. 1999 Feb;43(2):91–99. doi: 10.1016/s0168-8227(98)00115-6. [DOI] [PubMed] [Google Scholar]
  7. Goldring C. E., Narayanan R., Lagadec P., Jeannin J. F. Transcriptional inhibition of the inducible nitric oxide synthase gene by competitive binding of NF-kappa B/Rel proteins. Biochem Biophys Res Commun. 1995 Apr 6;209(1):73–79. doi: 10.1006/bbrc.1995.1472. [DOI] [PubMed] [Google Scholar]
  8. Guh J. Y., Lai Y. H., Shin S. J., Chuang L. Y., Tsai J. H. Epidermal growth factor in renal hypertrophy in streptozotocin-diabetic rats. Nephron. 1991;59(4):641–647. doi: 10.1159/000186658. [DOI] [PubMed] [Google Scholar]
  9. Guh J. Y., Yang M. L., Yang Y. L., Chang C. C., Chuang L. Y. Captopril reverses high-glucose-induced growth effects on LLC-PK1 cells partly by decreasing transforming growth factor-beta receptor protein expressions. J Am Soc Nephrol. 1996 Aug;7(8):1207–1215. doi: 10.1681/ASN.V781207. [DOI] [PubMed] [Google Scholar]
  10. Han D. C., Isono M., Hoffman B. B., Ziyadeh F. N. High glucose stimulates proliferation and collagen type I synthesis in renal cortical fibroblasts: mediation by autocrine activation of TGF-beta. J Am Soc Nephrol. 1999 Sep;10(9):1891–1899. doi: 10.1681/ASN.V1091891. [DOI] [PubMed] [Google Scholar]
  11. Harvey J. N., Edmundson A. W., Jaffa A. A., Martin L. L., Mayfield R. K. Renal excretion of kallikrein and eicosanoids in patients with type 1 (insulin-dependent) diabetes mellitus. Relationship to glomerular and tubular function. Diabetologia. 1992 Sep;35(9):857–862. doi: 10.1007/BF00399932. [DOI] [PubMed] [Google Scholar]
  12. Hoffman B. B., Sharma K., Zhu Y., Ziyadeh F. N. Transcriptional activation of transforming growth factor-beta1 in mesangial cell culture by high glucose concentration. Kidney Int. 1998 Oct;54(4):1107–1116. doi: 10.1046/j.1523-1755.1998.00119.x. [DOI] [PubMed] [Google Scholar]
  13. Huang J. S., Guh J. Y., Chen H. C., Hung W. C., Lai Y. H., Chuang L. Y. Role of receptor for advanced glycation end-product (RAGE) and the JAK/STAT-signaling pathway in AGE-induced collagen production in NRK-49F cells. J Cell Biochem. 2001;81(1):102–113. doi: 10.1002/1097-4644(20010401)81:1<102::aid-jcb1027>3.0.co;2-y. [DOI] [PubMed] [Google Scholar]
  14. Lee Y. J., Shin S. J., Tan M. S., Hsieh T. J., Tsai J. H. Increased renal atrial natriuretic peptide synthesis in rats with deoxycorticosterone acetate-salt treatment. Am J Physiol. 1996 Oct;271(4 Pt 2):F779–F789. doi: 10.1152/ajprenal.1996.271.4.F779. [DOI] [PubMed] [Google Scholar]
  15. Lee Y. N., Park Y. G., Choi Y. H., Cho Y. S., Cho-Chung Y. S. CRE-transcription factor decoy oligonucleotide inhibition of MCF-7 breast cancer cells: cross-talk with p53 signaling pathway. Biochemistry. 2000 Apr 25;39(16):4863–4868. doi: 10.1021/bi992272o. [DOI] [PubMed] [Google Scholar]
  16. Matsuyama T., Katayama Y., Fujita S. [Recent progress in evaluation of glycemic control by glycated protein and 1,5-AG]. Rinsho Byori. 1995 May;43(5):445–448. [PubMed] [Google Scholar]
  17. Mezzano S. A., Ruiz-Ortega M., Egido J. Angiotensin II and renal fibrosis. Hypertension. 2001 Sep;38(3 Pt 2):635–638. doi: 10.1161/hy09t1.094234. [DOI] [PubMed] [Google Scholar]
  18. Mosher D. F. Physiology of thrombospondin. Annu Rev Med. 1990;41:85–97. doi: 10.1146/annurev.me.41.020190.000505. [DOI] [PubMed] [Google Scholar]
  19. Munger J. S., Harpel J. G., Gleizes P. E., Mazzieri R., Nunes I., Rifkin D. B. Latent transforming growth factor-beta: structural features and mechanisms of activation. Kidney Int. 1997 May;51(5):1376–1382. doi: 10.1038/ki.1997.188. [DOI] [PubMed] [Google Scholar]
  20. Nakamura T., Ebihara I., Tomino Y., Koide H. Alteration of growth-related proto-oncogene expression in diabetic glomeruli by a specific endothelin receptor A antagonist. Nephrol Dial Transplant. 1996 Aug;11(8):1528–1531. [PubMed] [Google Scholar]
  21. Nouwen E. J., Verstrepen W. A., Buyssens N., Zhu M. Q., De Broe M. E. Hyperplasia, hypertrophy, and phenotypic alterations in the distal nephron after acute proximal tubular injury in the rat. Lab Invest. 1994 Apr;70(4):479–493. [PubMed] [Google Scholar]
  22. Nyengaard J. R., Flyvbjerg A., Rasch R. The impact of renal growth, regression and regrowth in experimental diabetes mellitus on number and size of proximal and distal tubular cells in the rat kidney. Diabetologia. 1993 Nov;36(11):1126–1131. doi: 10.1007/BF00401056. [DOI] [PubMed] [Google Scholar]
  23. Poczatek M. H., Hugo C., Darley-Usmar V., Murphy-Ullrich J. E. Glucose stimulation of transforming growth factor-beta bioactivity in mesangial cells is mediated by thrombospondin-1. Am J Pathol. 2000 Oct;157(4):1353–1363. doi: 10.1016/s0002-9440(10)64649-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Rasch R. Tubular lesions in streptozotocin-diabetic rats. Diabetologia. 1984 Jul;27(1):32–37. doi: 10.1007/BF00253498. [DOI] [PubMed] [Google Scholar]
  25. Raugi G. J., Lovett D. H. Thrombospondin secretion by cultured human glomerular mesangial cells. Am J Pathol. 1987 Nov;129(2):364–372. [PMC free article] [PubMed] [Google Scholar]
  26. Ribeiro S. M., Poczatek M., Schultz-Cherry S., Villain M., Murphy-Ullrich J. E. The activation sequence of thrombospondin-1 interacts with the latency-associated peptide to regulate activation of latent transforming growth factor-beta. J Biol Chem. 1999 May 7;274(19):13586–13593. doi: 10.1074/jbc.274.19.13586. [DOI] [PubMed] [Google Scholar]
  27. Rocco M. V., Chen Y., Goldfarb S., Ziyadeh F. N. Elevated glucose stimulates TGF-beta gene expression and bioactivity in proximal tubule. Kidney Int. 1992 Jan;41(1):107–114. doi: 10.1038/ki.1992.14. [DOI] [PubMed] [Google Scholar]
  28. Schmedtje J. F., Jr, Ji Y. S., Liu W. L., DuBois R. N., Runge M. S. Hypoxia induces cyclooxygenase-2 via the NF-kappaB p65 transcription factor in human vascular endothelial cells. J Biol Chem. 1997 Jan 3;272(1):601–608. doi: 10.1074/jbc.272.1.601. [DOI] [PubMed] [Google Scholar]
  29. Schultz-Cherry S., Chen H., Mosher D. F., Misenheimer T. M., Krutzsch H. C., Roberts D. D., Murphy-Ullrich J. E. Regulation of transforming growth factor-beta activation by discrete sequences of thrombospondin 1. J Biol Chem. 1995 Mar 31;270(13):7304–7310. doi: 10.1074/jbc.270.13.7304. [DOI] [PubMed] [Google Scholar]
  30. Sen R., Baltimore D. Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell. 1986 Aug 29;46(5):705–716. doi: 10.1016/0092-8674(86)90346-6. [DOI] [PubMed] [Google Scholar]
  31. Sharma K., Ziyadeh F. N. Hyperglycemia and diabetic kidney disease. The case for transforming growth factor-beta as a key mediator. Diabetes. 1995 Oct;44(10):1139–1146. doi: 10.2337/diab.44.10.1139. [DOI] [PubMed] [Google Scholar]
  32. Tada H., Isogai S. The fibronectin production is increased by thrombospondin via activation of TGF-beta in cultured human mesangial cells. Nephron. 1998;79(1):38–43. doi: 10.1159/000044989. [DOI] [PubMed] [Google Scholar]
  33. Tokunaga K., Taniguchi H., Yoda K., Shimizu M., Sakiyama S. Nucleotide sequence of a full-length cDNA for mouse cytoskeletal beta-actin mRNA. Nucleic Acids Res. 1986 Mar 25;14(6):2829–2829. doi: 10.1093/nar/14.6.2829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Torffvit O., Agardh C. D. Tubular secretion of Tamm-Horsfall protein is decreased in type 1 (insulin-dependent) diabetic patients with diabetic nephropathy. Nephron. 1993;65(2):227–231. doi: 10.1159/000187479. [DOI] [PubMed] [Google Scholar]
  35. Vlassara H., Striker L. J., Teichberg S., Fuh H., Li Y. M., Steffes M. Advanced glycation end products induce glomerular sclerosis and albuminuria in normal rats. Proc Natl Acad Sci U S A. 1994 Nov 22;91(24):11704–11708. doi: 10.1073/pnas.91.24.11704. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Wald H., Scherzer P., Rasch R., Popovtzer M. M. Renal tubular Na(+)-K(+)-ATPase in diabetes mellitus: relationship to metabolic abnormality. Am J Physiol. 1993 Jul;265(1 Pt 1):E96–101. doi: 10.1152/ajpendo.1993.265.1.E96. [DOI] [PubMed] [Google Scholar]
  37. Wight T. N., Raugi G. J., Mumby S. M., Bornstein P. Light microscopic immunolocation of thrombospondin in human tissues. J Histochem Cytochem. 1985 Apr;33(4):295–302. doi: 10.1177/33.4.3884704. [DOI] [PubMed] [Google Scholar]
  38. Wilmer W. A., Cosio F. G. DNA binding of activator protein-1 is increased in human mesangial cells cultured in high glucose concentrations. Kidney Int. 1998 May;53(5):1172–1181. doi: 10.1046/j.1523-1755.1998.00888.x. [DOI] [PubMed] [Google Scholar]
  39. Wolf G., Sharma K., Chen Y., Ericksen M., Ziyadeh F. N. High glucose-induced proliferation in mesangial cells is reversed by autocrine TGF-beta. Kidney Int. 1992 Sep;42(3):647–656. doi: 10.1038/ki.1992.330. [DOI] [PubMed] [Google Scholar]
  40. Wolf G., Ziyadeh F. N. Molecular mechanisms of diabetic renal hypertrophy. Kidney Int. 1999 Aug;56(2):393–405. doi: 10.1046/j.1523-1755.1999.00590.x. [DOI] [PubMed] [Google Scholar]
  41. Wolf G., Ziyadeh F. N. Renal tubular hypertrophy induced by angiotensin II. Semin Nephrol. 1997 Sep;17(5):448–454. [PubMed] [Google Scholar]
  42. Wolf Y. G., Rasmussen L. M., Ruoslahti E. Antibodies against transforming growth factor-beta 1 suppress intimal hyperplasia in a rat model. J Clin Invest. 1994 Mar;93(3):1172–1178. doi: 10.1172/JCI117070. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Yamamoto Y., Kato I., Doi T., Yonekura H., Ohashi S., Takeuchi M., Watanabe T., Yamagishi S., Sakurai S., Takasawa S. Development and prevention of advanced diabetic nephropathy in RAGE-overexpressing mice. J Clin Invest. 2001 Jul;108(2):261–268. doi: 10.1172/JCI11771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Yang Y. L., Guh J. Y., Yang M. L., Lai Y. H., Tsai J. H., Hung W. C., Chang C. C., Chuang L. Y. Interaction between high glucose and TGF-beta in cell cycle protein regulations in MDCK cells. J Am Soc Nephrol. 1998 Feb;9(2):182–193. doi: 10.1681/ASN.V92182. [DOI] [PubMed] [Google Scholar]
  45. Yevdokimova N., Wahab N. A., Mason R. M. Thrombospondin-1 is the key activator of TGF-beta1 in human mesangial cells exposed to high glucose. J Am Soc Nephrol. 2001 Apr;12(4):703–712. doi: 10.1681/ASN.V124703. [DOI] [PubMed] [Google Scholar]
  46. Ziyadeh F. N., Goldfarb S. The renal tubulointerstitium in diabetes mellitus. Kidney Int. 1991 Mar;39(3):464–475. doi: 10.1038/ki.1991.57. [DOI] [PubMed] [Google Scholar]
  47. Ziyadeh F. N. Significance of tubulointerstitial changes in diabetic renal disease. Kidney Int Suppl. 1996 May;54:S10–S13. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES