Abstract
The bglu1 cDNA for a beta-glucosidase cloned from rice (Oryza sativa L.) seedlings was expressed as a soluble and active protein in Escherichia coli and designated BGlu1. This enzyme hydrolysed beta-1,4-linked oligosaccharides with increasing catalytic efficiency (kcat/Km) values as the DP (degree of polymerization) increased from 2 to 6. In contrast, hydrolysis of beta-1,3-linked oligosaccharides decreased from DP 2 to 3, and polymers with a DP greater than 3 were not hydrolysed. The enzyme also hydrolysed p -nitrophenyl beta-D-glycosides and some natural glucosides but with lower catalytic efficiency than beta-linked oligosaccharides. Pyridoxine 5'-O-beta-D-glucoside was the most efficiently hydrolysed natural glycoside tested. BGlu1 also had high transglucosylation activity towards pyridoxine, producing pyridoxine 5'-O-beta-D-glucopyranoside in the presence of the glucose donor p-nitrophenyl beta-D-glucoside.
Full Text
The Full Text of this article is available as a PDF (345.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Akiyama T., Kaku H., Shibuya N. A cell wall-bound beta-glucosidase from germinated rice: purification and properties. Phytochemistry. 1998 May;48(1):49–54. doi: 10.1016/s0031-9422(97)01099-6. [DOI] [PubMed] [Google Scholar]
- Arthan Damrongkiet, Svasti Jisnuson, Kittakoop Prasat, Pittayakhachonwut Daraporn, Tanticharoen Morakot, Thebtaranonth Yodhathai. Antiviral isoflavonoid sulfate and steroidal glycosides from the fruits of Solanum torvum. Phytochemistry. 2002 Feb;59(4):459–463. doi: 10.1016/s0031-9422(01)00417-4. [DOI] [PubMed] [Google Scholar]
- Barrett T., Suresh C. G., Tolley S. P., Dodson E. J., Hughes M. A. The crystal structure of a cyanogenic beta-glucosidase from white clover, a family 1 glycosyl hydrolase. Structure. 1995 Sep 15;3(9):951–960. doi: 10.1016/s0969-2126(01)00229-5. [DOI] [PubMed] [Google Scholar]
- Czjzek M., Cicek M., Zamboni V., Bevan D. R., Henrissat B., Esen A. The mechanism of substrate (aglycone) specificity in beta -glucosidases is revealed by crystal structures of mutant maize beta -glucosidase-DIMBOA, -DIMBOAGlc, and -dhurrin complexes. Proc Natl Acad Sci U S A. 2000 Dec 5;97(25):13555–13560. doi: 10.1073/pnas.97.25.13555. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Czjzek M., Cicek M., Zamboni V., Burmeister W. P., Bevan D. R., Henrissat B., Esen A. Crystal structure of a monocotyledon (maize ZMGlu1) beta-glucosidase and a model of its complex with p-nitrophenyl beta-D-thioglucoside. Biochem J. 2001 Feb 15;354(Pt 1):37–46. doi: 10.1042/0264-6021:3540037. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Henrissat B. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J. 1991 Dec 1;280(Pt 2):309–316. doi: 10.1042/bj2800309. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hiromi K., Nitta Y., Numata C., Ono S. Subsite affinities of glucoamylase: examination of the validity of the subsite theory. Biochim Biophys Acta. 1973 Apr 12;302(2):362–375. doi: 10.1016/0005-2744(73)90164-2. [DOI] [PubMed] [Google Scholar]
- Hrmova M., Fincher G. B. Plant enzyme structure. Explaining substrate specificity and the evolution of function. Plant Physiol. 2001 Jan;125(1):54–57. doi: 10.1104/pp.125.1.54. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hrmova M., Harvey A. J., Wang J., Shirley N. J., Jones G. P., Stone B. A., Høj P. B., Fincher G. B. Barley beta-D-glucan exohydrolases with beta-D-glucosidase activity. Purification, characterization, and determination of primary structure from a cDNA clone. J Biol Chem. 1996 Mar 1;271(9):5277–5286. doi: 10.1074/jbc.271.9.5277. [DOI] [PubMed] [Google Scholar]
- Hrmova M., MacGregor E. A., Biely P., Stewart R. J., Fincher G. B. Substrate binding and catalytic mechanism of a barley beta-D-Glucosidase/(1,4)-beta-D-glucan exohydrolase. J Biol Chem. 1998 May 1;273(18):11134–11143. doi: 10.1074/jbc.273.18.11134. [DOI] [PubMed] [Google Scholar]
- Jeanmougin F., Thompson J. D., Gouy M., Higgins D. G., Gibson T. J. Multiple sequence alignment with Clustal X. Trends Biochem Sci. 1998 Oct;23(10):403–405. doi: 10.1016/s0968-0004(98)01285-7. [DOI] [PubMed] [Google Scholar]
- Keresztessy Z., Brown K., Dunn M. A., Hughes M. A. Identification of essential active-site residues in the cyanogenic beta-glucosidase (linamarase) from cassava (Manihot esculenta Crantz) by site-directed mutagenesis. Biochem J. 2001 Jan 15;353(Pt 2):199–205. doi: 10.1042/0264-6021:3530199. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Keresztessy Z., Kiss L., Hughes M. A. Investigation of the active site of the cyanogenic beta-D-glucosidase (linamarase) from Manihot esculenta Crantz (cassava). II. Identification of Glu-198 as an active site carboxylate group with acid catalytic function. Arch Biochem Biophys. 1994 Dec;315(2):323–330. doi: 10.1006/abbi.1994.1507. [DOI] [PubMed] [Google Scholar]
- Ketudat Cairns J. R., Champattanachai V., Srisomsap C., Wittman-Liebold B., Thiede B., Svasti J. Sequence and expression of Thai Rosewood beta-glucosidase/beta-fucosidase, a family 1 glycosyl hydrolase glycoprotein. J Biochem. 2000 Dec;128(6):999–1008. doi: 10.1093/oxfordjournals.jbchem.a022852. [DOI] [PubMed] [Google Scholar]
- Leah R., Kigel J., Svendsen I., Mundy J. Biochemical and molecular characterization of a barley seed beta-glucosidase. J Biol Chem. 1995 Jun 30;270(26):15789–15797. doi: 10.1074/jbc.270.26.15789. [DOI] [PubMed] [Google Scholar]
- Reese E. T., Maguire A. H., Parrish F. W. Glucosidases and exo-glucanases. Can J Biochem. 1968 Jan;46(1):25–34. doi: 10.1139/o68-005. [DOI] [PubMed] [Google Scholar]
- Suganuma T., Matsuno R., Ohnishi M., Hiromi K. A study of the mechanism of action of Taka-amylase A1 on linear oligosaccharides by product analysis and computer simulation. J Biochem. 1978 Aug;84(2):293–316. doi: 10.1093/oxfordjournals.jbchem.a132130. [DOI] [PubMed] [Google Scholar]
- Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]