Abstract
Ecotin is a dimeric periplasmic protein from Escherichia coli that has been shown to inhibit potently many trypsin-fold serine proteases of widely varying substrate specificity. To help elucidate the physiological function of ecotin, we examined the family of ecotin orthologues, which are present in a subset of Gram-negative bacteria. Phylogenetic analysis suggested that ecotin has an exogenous target, possibly neutrophil elastase. Recombinant protein was expressed and purified from E. coli, Yersinia pestis and Pseudomonas aeruginosa, all species that encounter the mammalian immune system, and also from the plant pathogen Pantoea citrea. Notably, the Pa. citrea variant inhibits neutrophil elastase 1000-fold less potently than the other orthologues. All four orthologues are dimeric proteins that potently inhibit (<10 pM) the pancreatic digestive proteases trypsin and chymotrypsin, while showing more variable inhibition (5 pM to 24 microM) of the blood proteases Factor Xa, thrombin and urokinase-type plasminogen activator. To test whether ecotin does, in fact, protect bacteria from neutrophil elastase, an ecotin-deficient strain was generated in E. coli. This strain is significantly more sensitive in cell-killing assays to human neutrophil elastase, which causes increased permeability of the outer membrane that persists even during renewed bacterial growth. Ecotin affects primarily the ability of E. coli to recover and grow following treatment with neutrophil elastase, rather than the actual rate of killing. This suggests that an important part of the antimicrobial mechanism of neutrophil elastase may be a periplasmic bacteriostatic effect of protease that has translocated across the damaged outer membrane.
Full Text
The Full Text of this article is available as a PDF (438.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Belaaouaj A., Kim K. S., Shapiro S. D. Degradation of outer membrane protein A in Escherichia coli killing by neutrophil elastase. Science. 2000 Aug 18;289(5482):1185–1188. doi: 10.1126/science.289.5482.1185. [DOI] [PubMed] [Google Scholar]
- Belaaouaj A., McCarthy R., Baumann M., Gao Z., Ley T. J., Abraham S. N., Shapiro S. D. Mice lacking neutrophil elastase reveal impaired host defense against gram negative bacterial sepsis. Nat Med. 1998 May;4(5):615–618. doi: 10.1038/nm0598-615. [DOI] [PubMed] [Google Scholar]
- Belaaouaj Abderrazzaq. Neutrophil elastase-mediated killing of bacteria: lessons from targeted mutagenesis. Microbes Infect. 2002 Oct;4(12):1259–1264. doi: 10.1016/s1286-4579(02)01654-4. [DOI] [PubMed] [Google Scholar]
- Birrer P., McElvaney N. G., Rüdeberg A., Sommer C. W., Liechti-Gallati S., Kraemer R., Hubbard R., Crystal R. G. Protease-antiprotease imbalance in the lungs of children with cystic fibrosis. Am J Respir Crit Care Med. 1994 Jul;150(1):207–213. doi: 10.1164/ajrccm.150.1.7912987. [DOI] [PubMed] [Google Scholar]
- Bjornson H. S., Ramirez-Ronda C., Saavedra S., Rivera-Vázquez C. R., Liu C., Hinthorn D. R. Comparison of empiric aztreonam and aminoglycoside regimens in the treatment of serious gram-negative lower respiratory infections. Clin Ther. 1993 Jan-Feb;15(1):65–78. [PubMed] [Google Scholar]
- Bode W., Huber R. Proteinase-protein inhibitor interaction. Biomed Biochim Acta. 1991;50(4-6):437–446. [PubMed] [Google Scholar]
- Burg N. D., Pillinger M. H. The neutrophil: function and regulation in innate and humoral immunity. Clin Immunol. 2001 Apr;99(1):7–17. doi: 10.1006/clim.2001.5007. [DOI] [PubMed] [Google Scholar]
- Campbell E. J., Silverman E. K., Campbell M. A. Elastase and cathepsin G of human monocytes. Quantification of cellular content, release in response to stimuli, and heterogeneity in elastase-mediated proteolytic activity. J Immunol. 1989 Nov 1;143(9):2961–2968. [PubMed] [Google Scholar]
- Cha J. S., Pujol C., Kado C. I. Identification and characterization of a Pantoea citrea gene encoding glucose dehydrogenase that is essential for causing pink disease of pineapple. Appl Environ Microbiol. 1997 Jan;63(1):71–76. doi: 10.1128/aem.63.1.71-76.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chung C. H., Ives H. E., Almeda S., Goldberg A. L. Purification from Escherichia coli of a periplasmic protein that is a potent inhibitor of pancreatic proteases. J Biol Chem. 1983 Sep 25;258(18):11032–11038. [PubMed] [Google Scholar]
- Cordero L., Ayers L. W., Davis K. Neonatal airway colonization with gram-negative bacilli: association with severity of bronchopulmonary dysplasia. Pediatr Infect Dis J. 1997 Jan;16(1):18–23. doi: 10.1097/00006454-199701000-00005. [DOI] [PubMed] [Google Scholar]
- Damiano V. V., Kucich U., Murer E., Laudenslager N., Weinbaum G. Ultrastructural quantitation of peroxidase- and elastase-containing granules in human neutrophils. Am J Pathol. 1988 May;131(2):235–245. [PMC free article] [PubMed] [Google Scholar]
- Dufresne Alexis, Salanoubat Marcel, Partensky Frédéric, Artiguenave François, Axmann Ilka M., Barbe Valérie, Duprat Simone, Galperin Michael Y., Koonin Eugene V., Le Gall Florence. Genome sequence of the cyanobacterium Prochlorococcus marinus SS120, a nearly minimal oxyphototrophic genome. Proc Natl Acad Sci U S A. 2003 Aug 13;100(17):10020–10025. doi: 10.1073/pnas.1733211100. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Duong F., Lazdunski A., Cami B., Murgier M. Sequence of a cluster of genes controlling synthesis and secretion of alkaline protease in Pseudomonas aeruginosa: relationships to other secretory pathways. Gene. 1992 Nov 2;121(1):47–54. doi: 10.1016/0378-1119(92)90160-q. [DOI] [PubMed] [Google Scholar]
- Döring G. Serine proteinase inhibitor therapy in alpha(1)-antitrypsin inhibitor deficiency and cystic fibrosis. Pediatr Pulmonol. 1999 Nov;28(5):363–375. doi: 10.1002/(sici)1099-0496(199911)28:5<363::aid-ppul9>3.0.co;2-#. [DOI] [PubMed] [Google Scholar]
- Eggers C. T., Wang S. X., Fletterick R. J., Craik C. S. The role of ecotin dimerization in protease inhibition. J Mol Biol. 2001 May 18;308(5):975–991. doi: 10.1006/jmbi.2001.4754. [DOI] [PubMed] [Google Scholar]
- Fain M. G., Haddock J. D. Phenotypic and phylogenetic characterization of Burkholderia (Pseudomonas) sp. strain LB400. Curr Microbiol. 2001 Apr;42(4):269–275. doi: 10.1007/s002840110216. [DOI] [PubMed] [Google Scholar]
- Gill S. C., von Hippel P. H. Calculation of protein extinction coefficients from amino acid sequence data. Anal Biochem. 1989 Nov 1;182(2):319–326. doi: 10.1016/0003-2697(89)90602-7. [DOI] [PubMed] [Google Scholar]
- Goldstein W., Döring G. Lysosomal enzymes from polymorphonuclear leukocytes and proteinase inhibitors in patients with cystic fibrosis. Am Rev Respir Dis. 1986 Jul;134(1):49–56. doi: 10.1164/arrd.1986.134.1.49. [DOI] [PubMed] [Google Scholar]
- Govan J. R., Deretic V. Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol Rev. 1996 Sep;60(3):539–574. doi: 10.1128/mr.60.3.539-574.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grenier D. Characteristics of a protease inhibitor produced by Prevotella intermedia. FEMS Microbiol Lett. 1994 Jun 1;119(1-2):13–18. doi: 10.1111/j.1574-6968.1994.tb06860.x. [DOI] [PubMed] [Google Scholar]
- Hampton M. B., Kettle A. J., Winterbourn C. C. Inside the neutrophil phagosome: oxidants, myeloperoxidase, and bacterial killing. Blood. 1998 Nov 1;92(9):3007–3017. [PubMed] [Google Scholar]
- Hume Emma B. H., Stapleton Fiona, Willcox Mark D. P. Evasion of cellular ocular defenses by contact lens isolates of Serratia marcescens. Eye Contact Lens. 2003 Apr;29(2):108–112. doi: 10.1097/01.ICL.0000062461.24391.7F. [DOI] [PubMed] [Google Scholar]
- Kharazmi A. Mechanisms involved in the evasion of the host defence by Pseudomonas aeruginosa. Immunol Lett. 1991 Oct;30(2):201–205. doi: 10.1016/0165-2478(91)90026-7. [DOI] [PubMed] [Google Scholar]
- Kolmar H., Waller P. R., Sauer R. T. The DegP and DegQ periplasmic endoproteases of Escherichia coli: specificity for cleavage sites and substrate conformation. J Bacteriol. 1996 Oct;178(20):5925–5929. doi: 10.1128/jb.178.20.5925-5929.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Krojer Tobias, Garrido-Franco Marta, Huber Robert, Ehrmann Michael, Clausen Tim. Crystal structure of DegP (HtrA) reveals a new protease-chaperone machine. Nature. 2002 Mar 28;416(6879):455–459. doi: 10.1038/416455a. [DOI] [PubMed] [Google Scholar]
- Laskowski M., Jr, Kato I. Protein inhibitors of proteinases. Annu Rev Biochem. 1980;49:593–626. doi: 10.1146/annurev.bi.49.070180.003113. [DOI] [PubMed] [Google Scholar]
- Liou T. G., Campbell E. J. Nonisotropic enzyme--inhibitor interactions: a novel nonoxidative mechanism for quantum proteolysis by human neutrophils. Biochemistry. 1995 Dec 12;34(49):16171–16177. doi: 10.1021/bi00049a032. [DOI] [PubMed] [Google Scholar]
- Liou T. G., Campbell E. J. Quantum proteolysis resulting from release of single granules by human neutrophils: a novel, nonoxidative mechanism of extracellular proteolytic activity. J Immunol. 1996 Sep 15;157(6):2624–2631. [PubMed] [Google Scholar]
- Létoffé S., Delepelaire P., Wandersman C. Characterization of a protein inhibitor of extracellular proteases produced by Erwinia chrysanthemi. Mol Microbiol. 1989 Jan;3(1):79–86. doi: 10.1111/j.1365-2958.1989.tb00106.x. [DOI] [PubMed] [Google Scholar]
- MacIvor D. M., Shapiro S. D., Pham C. T., Belaaouaj A., Abraham S. N., Ley T. J. Normal neutrophil function in cathepsin G-deficient mice. Blood. 1999 Dec 15;94(12):4282–4293. [PubMed] [Google Scholar]
- Mah T. F., O'Toole G. A. Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol. 2001 Jan;9(1):34–39. doi: 10.1016/s0966-842x(00)01913-2. [DOI] [PubMed] [Google Scholar]
- Mannion B. A., Weiss J., Elsbach P. Separation of sublethal and lethal effects of the bactericidal/permeability increasing protein on Escherichia coli. J Clin Invest. 1990 Mar;85(3):853–860. doi: 10.1172/JCI114512. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maurizi M. R. Proteases and protein degradation in Escherichia coli. Experientia. 1992 Feb 15;48(2):178–201. doi: 10.1007/BF01923511. [DOI] [PubMed] [Google Scholar]
- McGrath M. E., Erpel T., Browner M. F., Fletterick R. J. Expression of the protease inhibitor ecotin and its co-crystallization with trypsin. J Mol Biol. 1991 Nov 20;222(2):139–142. doi: 10.1016/0022-2836(91)90199-g. [DOI] [PubMed] [Google Scholar]
- McGrath M. E., Erpel T., Bystroff C., Fletterick R. J. Macromolecular chelation as an improved mechanism of protease inhibition: structure of the ecotin-trypsin complex. EMBO J. 1994 Apr 1;13(7):1502–1507. doi: 10.1002/j.1460-2075.1994.tb06411.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McGrath M. E., Hines W. M., Sakanari J. A., Fletterick R. J., Craik C. S. The sequence and reactive site of ecotin. A general inhibitor of pancreatic serine proteases from Escherichia coli. J Biol Chem. 1991 Apr 5;266(10):6620–6625. [PubMed] [Google Scholar]
- Murray I. A., Hawkins A. R., Keyte J. W., Shaw W. V. Nucleotide sequence analysis and overexpression of the gene encoding a type III chloramphenicol acetyltransferase. Biochem J. 1988 May 15;252(1):173–179. doi: 10.1042/bj2520173. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nielsen H., Engelbrecht J., Brunak S., von Heijne G. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng. 1997 Jan;10(1):1–6. doi: 10.1093/protein/10.1.1. [DOI] [PubMed] [Google Scholar]
- Ogata H., Audic S., Renesto-Audiffren P., Fournier P. E., Barbe V., Samson D., Roux V., Cossart P., Weissenbach J., Claverie J. M. Mechanisms of evolution in Rickettsia conorii and R. prowazekii. Science. 2001 Sep 14;293(5537):2093–2098. doi: 10.1126/science.1061471. [DOI] [PubMed] [Google Scholar]
- Palenik B., Brahamsha B., Larimer F. W., Land M., Hauser L., Chain P., Lamerdin J., Regala W., Allen E. E., McCarren J. The genome of a motile marine Synechococcus. Nature. 2003 Aug 13;424(6952):1037–1042. doi: 10.1038/nature01943. [DOI] [PubMed] [Google Scholar]
- Palmer S. M., St John A. C. Characterization of a membrane-associated serine protease in Escherichia coli. J Bacteriol. 1987 Apr;169(4):1474–1479. doi: 10.1128/jb.169.4.1474-1479.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pellegrini M., Marcotte E. M., Thompson M. J., Eisenberg D., Yeates T. O. Assigning protein functions by comparative genome analysis: protein phylogenetic profiles. Proc Natl Acad Sci U S A. 1999 Apr 13;96(8):4285–4288. doi: 10.1073/pnas.96.8.4285. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Perrière G., Duret L., Gouy M. HOBACGEN: database system for comparative genomics in bacteria. Genome Res. 2000 Mar;10(3):379–385. doi: 10.1101/gr.10.3.379. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Prohinar Polonca, Forst Steve A., Reed Deoine, Mandic-Mulec Ines, Weiss Jerrold. OmpR-dependent and OmpR-independent responses of Escherichia coli to sublethal attack by the neutrophil bactericidal/permeability increasing protein. Mol Microbiol. 2002 Mar;43(6):1493–1504. doi: 10.1046/j.1365-2958.2002.02804.x. [DOI] [PubMed] [Google Scholar]
- Raivio T. L., Silhavy T. J. Periplasmic stress and ECF sigma factors. Annu Rev Microbiol. 2001;55:591–624. doi: 10.1146/annurev.micro.55.1.591. [DOI] [PubMed] [Google Scholar]
- Rajan Sujatha, Saiman Lisa. Pulmonary infections in patients with cystic fibrosis. Semin Respir Infect. 2002 Mar;17(1):47–56. doi: 10.1053/srin.2002.31690. [DOI] [PubMed] [Google Scholar]
- Ramirez J. A. The choice of empirical antibiotic therapy for nosocomial pneumonia. J Chemother. 1994 Apr;6 (Suppl 2):47–50. [PubMed] [Google Scholar]
- Rawlings Neil D., O'Brien Emmet, Barrett Alan J. MEROPS: the protease database. Nucleic Acids Res. 2002 Jan 1;30(1):343–346. doi: 10.1093/nar/30.1.343. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reeves Emer P., Lu Hui, Jacobs Hugues Lortat, Messina Carlo G. M., Bolsover Steve, Gabella Giorgio, Potma Eric O., Warley Alice, Roes Jürgen, Segal Anthony W. Killing activity of neutrophils is mediated through activation of proteases by K+ flux. Nature. 2002 Mar 21;416(6878):291–297. doi: 10.1038/416291a. [DOI] [PubMed] [Google Scholar]
- Rocap Gabrielle, Larimer Frank W., Lamerdin Jane, Malfatti Stephanie, Chain Patrick, Ahlgren Nathan A., Arellano Andrae, Coleman Maureen, Hauser Loren, Hess Wolfgang R. Genome divergence in two Prochlorococcus ecotypes reflects oceanic niche differentiation. Nature. 2003 Aug 13;424(6952):1042–1047. doi: 10.1038/nature01947. [DOI] [PubMed] [Google Scholar]
- Schaaf B., Wieghorst A., Aries S. P., Dalhoff K., Braun J. Neutrophil inflammation and activation in bronchiectasis: comparison with pneumonia and idiopathic pulmonary fibrosis. Respiration. 2000;67(1):52–59. doi: 10.1159/000029463. [DOI] [PubMed] [Google Scholar]
- Schechter I., Berger A. On the size of the active site in proteases. I. Papain. Biochem Biophys Res Commun. 1967 Apr 20;27(2):157–162. doi: 10.1016/s0006-291x(67)80055-x. [DOI] [PubMed] [Google Scholar]
- Seymour J. L., Lindquist R. N., Dennis M. S., Moffat B., Yansura D., Reilly D., Wessinger M. E., Lazarus R. A. Ecotin is a potent anticoagulant and reversible tight-binding inhibitor of factor Xa. Biochemistry. 1994 Apr 5;33(13):3949–3958. doi: 10.1021/bi00179a022. [DOI] [PubMed] [Google Scholar]
- Shiga Y., Hasegawa K., Tsuboi A., Yamagata H., Udaka S. Characterization of an extracellular protease inhibitor of Bacillus brevis HPD31 and nucleotide sequence of the corresponding gene. Appl Environ Microbiol. 1992 Feb;58(2):525–531. doi: 10.1128/aem.58.2.525-531.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shiga Y., Yamagata H., Tsukagoshi N., Udaka S. BbrPI, an extracellular proteinase inhibitor of Bacillus brevis, protects cells from the attack of exogenous proteinase. Biosci Biotechnol Biochem. 1995 Dec;59(12):2348–2350. doi: 10.1271/bbb.59.2348. [DOI] [PubMed] [Google Scholar]
- Shin D. H., Song H. K., Seong I. S., Lee C. S., Chung C. H., Suh S. W. Crystal structure analyses of uncomplexed ecotin in two crystal forms: implications for its function and stability. Protein Sci. 1996 Nov;5(11):2236–2247. doi: 10.1002/pro.5560051110. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Slater S., Maurer R. Simple phagemid-based system for generating allele replacements in Escherichia coli. J Bacteriol. 1993 Jul;175(13):4260–4262. doi: 10.1128/jb.175.13.4260-4262.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sonntag I., Schwarz H., Hirota Y., Henning U. Cell envelope and shape of Escherichia coli: multiple mutants missing the outer membrane lipoprotein and other major outer membrane proteins. J Bacteriol. 1978 Oct;136(1):280–285. doi: 10.1128/jb.136.1.280-285.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stover C. K., Pham X. Q., Erwin A. L., Mizoguchi S. D., Warrener P., Hickey M. J., Brinkman F. S., Hufnagle W. O., Kowalik D. J., Lagrou M. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature. 2000 Aug 31;406(6799):959–964. doi: 10.1038/35023079. [DOI] [PubMed] [Google Scholar]
- Thomas E. L., Lehrer R. I., Rest R. F. Human neutrophil antimicrobial activity. Rev Infect Dis. 1988 Jul-Aug;10 (Suppl 2):S450–S456. doi: 10.1093/cid/10.supplement_2.s450. [DOI] [PubMed] [Google Scholar]
- Ulmer J. S., Lindquist R. N., Dennis M. S., Lazarus R. A. Ecotin is a potent inhibitor of the contact system proteases factor XIIa and plasma kallikrein. FEBS Lett. 1995 May 29;365(2-3):159–163. doi: 10.1016/0014-5793(95)00466-m. [DOI] [PubMed] [Google Scholar]
- Vaara M. Agents that increase the permeability of the outer membrane. Microbiol Rev. 1992 Sep;56(3):395–411. doi: 10.1128/mr.56.3.395-411.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang Ying. The function of OmpA in Escherichia coli. Biochem Biophys Res Commun. 2002 Mar 29;292(2):396–401. doi: 10.1006/bbrc.2002.6657. [DOI] [PubMed] [Google Scholar]
- Watanabe A., Kikuchi Tohru, Lutfor Afzalunnesa Binte, Tokue Yutaka, Takahashi Hiroshi, Fujimura Shigeru, Shoji Satoru, Honda Yoshihiro, Nakai Yushi, Nukiwa Toshihiro. In vitro antimicrobial activity and penetration rate into sputum of gatifloxacin, a novel 6-fluoro-8-methoxy quinolone, and its therapeutic efficacy in respiratory infections. J Infect Chemother. 1999 Sep;5(3):149–155. doi: 10.1007/s101560050025. [DOI] [PubMed] [Google Scholar]
- Weinrauch Yvette, Drujan Doreen, Shapiro Steven D., Weiss Jerrold, Zychlinsky Arturo. Neutrophil elastase targets virulence factors of enterobacteria. Nature. 2002 May 2;417(6884):91–94. doi: 10.1038/417091a. [DOI] [PubMed] [Google Scholar]
- Witko-Sarsat V., Halbwachs-Mecarelli L., Schuster A., Nusbaum P., Ueki I., Canteloup S., Lenoir G., Descamps-Latscha B., Nadel J. A. Proteinase 3, a potent secretagogue in airways, is present in cystic fibrosis sputum. Am J Respir Cell Mol Biol. 1999 Apr;20(4):729–736. doi: 10.1165/ajrcmb.20.4.3371. [DOI] [PubMed] [Google Scholar]
- Wolfe Alan J., Chang Dong-Eun, Walker Jason D., Seitz-Partridge Jeanine E., Vidaurri Michael D., Lange Charles F., Prüss Birgit M., Henk Margaret C., Larkin John C., Conway Tyrrell. Evidence that acetyl phosphate functions as a global signal during biofilm development. Mol Microbiol. 2003 May;48(4):977–988. doi: 10.1046/j.1365-2958.2003.03457.x. [DOI] [PubMed] [Google Scholar]
- Yang S. Q., Wang C. I., Gillmor S. A., Fletterick R. J., Craik C. S. Ecotin: a serine protease inhibitor with two distinct and interacting binding sites. J Mol Biol. 1998 Jun 19;279(4):945–957. doi: 10.1006/jmbi.1998.1748. [DOI] [PubMed] [Google Scholar]