Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 Apr 1;379(Pt 1):119–124. doi: 10.1042/BJ20031463

New insights in dihydropyrimidine dehydrogenase deficiency: a pivotal role for beta-aminoisobutyric acid?

André B P Van Kuilenburg 1, Alida E M Stroomer 1, Henk Van Lenthe 1, Nico G G M Abeling 1, Albert H Van Gennip 1
PMCID: PMC1224056  PMID: 14705962

Abstract

DPD (dihydropyrimidine dehydrogenase) constitutes the first step of the pyrimidine degradation pathway, in which the pyrimidine bases uracil and thymine are catabolized to beta-alanine and the R-enantiomer of beta-AIB (beta-aminoisobutyric acid) respectively. The S-enantiomer of beta-AIB is predominantly derived from the catabolism of valine. It has been suggested that an altered homoeostasis of beta-alanine underlies some of the clinical abnormalities encountered in patients with a DPD deficiency. In the present study, we demonstrated that only a slightly decreased concentration of beta-alanine was present in the urine and plasma, whereas normal levels of beta-alanine were present in the cerebrospinal fluid of patients with a DPD deficiency. Therefore the metabolism of beta-alanine-containing peptides, such as carnosine, may be an important factor involved in the homoeostasis of beta-alanine in patients with DPD deficiency. The mean concentration of beta-AIB was approx. 2-3-fold lower in cerebrospinal fluid and urine of patients with a DPD deficiency, when compared with controls. In contrast, strongly decreased levels (10-fold) of beta-AIB were present in the plasma of DPD patients. Our results demonstrate that, under pathological conditions, the catabolism of valine can result in the production of significant amounts of beta-AIB. Furthermore, the observation that the R-enantiomer of beta-AIB is abundantly present in the urine of DPD patients suggests that significant cross-over exists between the thymine and valine catabolic pathways.

Full Text

The Full Text of this article is available as a PDF (187.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Fiumara A., van Kuilenburg A. B. P., Caruso U., Nucifora C., Marzullo E., Barone R., Meli C., van Gennip A. H. Dihydropyrimidine dehydrogenase deficiency and acute neurological presentation. J Inherit Metab Dis. 2003;26(4):407–409. doi: 10.1023/a:1025123622821. [DOI] [PubMed] [Google Scholar]
  2. Gejyo F., Kinoshita Y., Ikenaka T. Elevation of serum levels of beta-aminoisobutyric acid in uremic patients and the toxicity of the amino acid. Clin Nephrol. 1977 Dec;8(6):520–525. [PubMed] [Google Scholar]
  3. Holopainen I., Kontro P. High-affinity uptake of taurine and beta-alanine in primary cultures of rat astrocytes. Neurochem Res. 1986 Feb;11(2):207–215. doi: 10.1007/BF00967969. [DOI] [PubMed] [Google Scholar]
  4. Jackson M. C., Kucera C. M., Lenney J. F. Purification and properties of human serum carnosinase. Clin Chim Acta. 1991 Feb 15;196(2-3):193–205. doi: 10.1016/0009-8981(91)90073-l. [DOI] [PubMed] [Google Scholar]
  5. Kohen R., Yamamoto Y., Cundy K. C., Ames B. N. Antioxidant activity of carnosine, homocarnosine, and anserine present in muscle and brain. Proc Natl Acad Sci U S A. 1988 May;85(9):3175–3179. doi: 10.1073/pnas.85.9.3175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Komura J., Tamai I., Senmaru M., Terasaki T., Sai Y., Tsuji A. Sodium and chloride ion-dependent transport of beta-alanine across the blood-brain barrier. J Neurochem. 1996 Jul;67(1):330–335. doi: 10.1046/j.1471-4159.1996.67010330.x. [DOI] [PubMed] [Google Scholar]
  7. Kontro P. beta-Alanine uptake by mouse brain slices. Neuroscience. 1983 Jan;8(1):153–159. doi: 10.1016/0306-4522(83)90034-9. [DOI] [PubMed] [Google Scholar]
  8. Landaas S., Solem E. High excretion of beta-aminoisobutyric acid in patients with ketoacidosis. Scand J Clin Lab Invest. 1983 Feb;43(1):95–97. [PubMed] [Google Scholar]
  9. Manning N. J., Pollitt R. J. Tracer studies of the interconversion of R- and S-methylmalonic semialdehydes in man. Biochem J. 1985 Oct 15;231(2):481–484. doi: 10.1042/bj2310481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Minard F. N., Grant D. S. 5,6-dihydrouracil: its occurrence and metabolism in rat brain. Biochim Biophys Acta. 1970 May 21;209(1):255–257. doi: 10.1016/0005-2787(70)90682-9. [DOI] [PubMed] [Google Scholar]
  11. Pollitt R. J., Green A., Smith R. Excessive excretion of beta-alanine and of 3-hydroxypropionic, R- and S-3-aminoisobutyric, R- and S-3-hydroxyisobutyric and S-2-(hydroxymethyl)butyric acids probably due to a defect in the metabolism of the corresponding malonic semialdehydes. J Inherit Metab Dis. 1985;8(2):75–79. doi: 10.1007/BF01801669. [DOI] [PubMed] [Google Scholar]
  12. Ririe D. G., Roberts P. R., Shouse M. N., Zaloga G. P. Vasodilatory actions of the dietary peptide carnosine. Nutrition. 2000 Mar;16(3):168–172. doi: 10.1016/s0899-9007(99)00268-3. [DOI] [PubMed] [Google Scholar]
  13. Roe C. R., Struys E., Kok R. M., Roe D. S., Harris R. A., Jakobs C. Methylmalonic semialdehyde dehydrogenase deficiency: psychomotor delay and methylmalonic aciduria without metabolic decompensation. Mol Genet Metab. 1998 Sep;65(1):35–43. doi: 10.1006/mgme.1998.2737. [DOI] [PubMed] [Google Scholar]
  14. Schmieden V., Betz H. Pharmacology of the inhibitory glycine receptor: agonist and antagonist actions of amino acids and piperidine carboxylic acid compounds. Mol Pharmacol. 1995 Nov;48(5):919–927. [PubMed] [Google Scholar]
  15. Schmieden V., Kuhse J., Betz H. A novel domain of the inhibitory glycine receptor determining antagonist efficacies: further evidence for partial agonism resulting from self-inhibition. Mol Pharmacol. 1999 Sep;56(3):464–472. doi: 10.1124/mol.56.3.464. [DOI] [PubMed] [Google Scholar]
  16. Solem E. The absolute configuration of beta-aminoisobutyric acid formed by degradation of thymine in man. Clin Chim Acta. 1974 Jun 19;53(2):183–190. doi: 10.1016/0009-8981(74)90097-7. [DOI] [PubMed] [Google Scholar]
  17. Tamaki N., Kaneko M., Kikugawa M., Fujimoto S. Evaluation of interconversion between (R)- and (S)-enantiomers of beta-aminoisobutyrate. Biochim Biophys Acta. 1990 Jul 20;1035(1):117–119. doi: 10.1016/0304-4165(90)90183-w. [DOI] [PubMed] [Google Scholar]
  18. Van Kuilenburg A. B., Stroomer A. E., Peters G. J., Van Gennip A. H. Simultaneous determination of F-beta-alanine and beta-alanine in plasma and urine with dual-column reversed-phase high-performance liquid chromatography. J Chromatogr B Biomed Sci Appl. 2001 Aug 5;759(1):51–61. doi: 10.1016/s0378-4347(01)00203-1. [DOI] [PubMed] [Google Scholar]
  19. Van Kuilenburg A. B., Vreken P., Abeling N. G., Bakker H. D., Meinsma R., Van Lenthe H., De Abreu R. A., Smeitink J. A., Kayserili H., Apak M. Y. Genotype and phenotype in patients with dihydropyrimidine dehydrogenase deficiency. Hum Genet. 1999 Jan;104(1):1–9. doi: 10.1007/pl00008711. [DOI] [PubMed] [Google Scholar]
  20. Vreken P., van Kuilenburg A. B., Hamajima N., Meinsma R., van Lenthe H., Göhlich-Ratmann G., Assmann B. E., Wevers R. A., van Gennip A. H. cDNA cloning, genomic structure and chromosomal localization of the human BUP-1 gene encoding beta-ureidopropionase. Biochim Biophys Acta. 1999 Oct 28;1447(2-3):251–257. doi: 10.1016/s0167-4781(99)00182-7. [DOI] [PubMed] [Google Scholar]
  21. Wu F. S., Gibbs T. T., Farb D. H. Dual activation of GABAA and glycine receptors by beta-alanine: inverse modulation by progesterone and 5 alpha-pregnan-3 alpha-ol-20-one. Eur J Pharmacol. 1993 Aug 15;246(3):239–246. doi: 10.1016/0922-4106(93)90037-a. [DOI] [PubMed] [Google Scholar]
  22. van Gennip A. H., Kamerling J. P., de Bree P. K., Wadman S. K. Linear relationship between the R- and S-enantiomers of a beta-aminoisobutyric acid in human urine. Clin Chim Acta. 1981 Nov 11;116(3):261–267. doi: 10.1016/0009-8981(81)90045-0. [DOI] [PubMed] [Google Scholar]
  23. van Gennip A. H., van Bree-Blom E. J., Abeling N. G., van Erven A. J., Voûte P. A. beta-Aminoisobutyric acid as a marker of thymine catabolism in malignancy. Clin Chim Acta. 1987 Jun 15;165(2-3):365–377. doi: 10.1016/0009-8981(87)90182-3. [DOI] [PubMed] [Google Scholar]
  24. van Kuilenburg A. B., Muller E. W., Haasjes J., Meinsma R., Zoetekouw L., Waterham H. R., Baas F., Richel D. J., van Gennip A. H. Lethal outcome of a patient with a complete dihydropyrimidine dehydrogenase (DPD) deficiency after administration of 5-fluorouracil: frequency of the common IVS14+1G>A mutation causing DPD deficiency. Clin Cancer Res. 2001 May;7(5):1149–1153. [PubMed] [Google Scholar]
  25. van Kuilenburg André B. P., De Abreu Ronney A., van Gennip Albert H. Pharmacogenetic and clinical aspects of dihydropyrimidine dehydrogenase deficiency. Ann Clin Biochem. 2003 Jan;40(Pt 1):41–45. doi: 10.1258/000456303321016150. [DOI] [PubMed] [Google Scholar]
  26. van den Berg H., Noorduyn A., van Kuilenburg A. B., Kroes W., de Jong D. Leukaemic expression of anaplastic large cell lymphoma with 46,XX,ins(2;5)(p23;q15q35) in a child with dihydropyrimidine dehydrogenase deficiency. Leukemia. 2000 Apr;14(4):769–770. doi: 10.1038/sj.leu.2401728. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES