Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 Apr 1;379(Pt 1):1–9. doi: 10.1042/BJ20031648

AKAPs (A-kinase anchoring proteins) and molecules that compose their G-protein-coupled receptor signalling complexes.

Craig C Malbon 1, Jiangchuan Tao 1, Hsien-yu Wang 1
PMCID: PMC1224059  PMID: 14715081

Abstract

Cell signalling mediated via GPCRs (G-protein-coupled receptors) is a major paradigm in biology, involving the assembly of receptors, G-proteins, effectors and downstream elements into complexes that approach in design 'solid-state' signalling devices. Scaffold molecules, such as the AKAPs (A-kinase anchoring proteins), were discovered more than a decade ago and represent dynamic platforms, enabling multivalent signalling. AKAP79 and AKAP250 were the first to be shown to bind to membrane-embedded GPCRs, orchestrating the interactions of various protein kinases (including tyrosine kinases), protein phosphatases (e.g. calcineurin) and cytoskeletal elements with at least one member of the superfamily of GPCRs, the prototypical beta2-adrenergic receptor. In this review, the multivalent interactions of AKAP250 with the cell membrane, receptor, cytoskeleton and constituent components are detailed, providing a working model for AKAP-based GPCR signalling complexes. Dynamic regulation of the AKAP-receptor complex is mediated by ordered protein phosphorylation.

Full Text

The Full Text of this article is available as a PDF (312.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahn S., Maudsley S., Luttrell L. M., Lefkowitz R. J., Daaka Y. Src-mediated tyrosine phosphorylation of dynamin is required for beta2-adrenergic receptor internalization and mitogen-activated protein kinase signaling. J Biol Chem. 1999 Jan 15;274(3):1185–1188. doi: 10.1074/jbc.274.3.1185. [DOI] [PubMed] [Google Scholar]
  2. Allen L. A., Aderem A. Protein kinase C regulates MARCKS cycling between the plasma membrane and lysosomes in fibroblasts. EMBO J. 1995 Mar 15;14(6):1109–1121. doi: 10.1002/j.1460-2075.1995.tb07094.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Altier Christophe, Dubel Stefan J., Barrère Christian, Jarvis Scott E., Stotz Stéphanie C., Spaetgens Renée L., Scott John D., Cornet Véronique, De Waard Michel, Zamponi Gerald W. Trafficking of L-type calcium channels mediated by the postsynaptic scaffolding protein AKAP79. J Biol Chem. 2002 Jul 11;277(37):33598–33603. doi: 10.1074/jbc.M202476200. [DOI] [PubMed] [Google Scholar]
  4. Angers S., Salahpour A., Joly E., Hilairet S., Chelsky D., Dennis M., Bouvier M. Detection of beta 2-adrenergic receptor dimerization in living cells using bioluminescence resonance energy transfer (BRET). Proc Natl Acad Sci U S A. 2000 Mar 28;97(7):3684–3689. doi: 10.1073/pnas.060590697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ayoub Mohammed A., Couturier Cyril, Lucas-Meunier Estelle, Angers Stephane, Fossier Philippe, Bouvier Michel, Jockers Ralf. Monitoring of ligand-independent dimerization and ligand-induced conformational changes of melatonin receptors in living cells by bioluminescence resonance energy transfer. J Biol Chem. 2002 Apr 8;277(24):21522–21528. doi: 10.1074/jbc.M200729200. [DOI] [PubMed] [Google Scholar]
  6. Brandon Nicholas J., Jovanovic Jasmina N., Colledge Marcie, Kittler Josef T., Brandon Julia M., Scott John D., Moss Stephen J. A-kinase anchoring protein 79/150 facilitates the phosphorylation of GABA(A) receptors by cAMP-dependent protein kinase via selective interaction with receptor beta subunits. Mol Cell Neurosci. 2003 Jan;22(1):87–97. doi: 10.1016/s1044-7431(02)00017-9. [DOI] [PubMed] [Google Scholar]
  7. Bregman D. B., Bhattacharyya N., Rubin C. S. High affinity binding protein for the regulatory subunit of cAMP-dependent protein kinase II-B. Cloning, characterization, and expression of cDNAs for rat brain P150. J Biol Chem. 1989 Mar 15;264(8):4648–4656. [PubMed] [Google Scholar]
  8. Bushman W. A., Wilson L. K., Luttrell D. K., Moyers J. S., Parsons S. J. Overexpression of c-src enhances beta-adrenergic-induced cAMP accumulation. Proc Natl Acad Sci U S A. 1990 Oct;87(19):7462–7466. doi: 10.1073/pnas.87.19.7462. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Carnegie Graeme K., Scott John D. A-kinase anchoring proteins and neuronal signaling mechanisms. Genes Dev. 2003 Jul 1;17(13):1557–1568. doi: 10.1101/gad.1095803. [DOI] [PubMed] [Google Scholar]
  10. Carr D. W., Hausken Z. E., Fraser I. D., Stofko-Hahn R. E., Scott J. D. Association of the type II cAMP-dependent protein kinase with a human thyroid RII-anchoring protein. Cloning and characterization of the RII-binding domain. J Biol Chem. 1992 Jul 5;267(19):13376–13382. [PubMed] [Google Scholar]
  11. Carr D. W., Stofko-Hahn R. E., Fraser I. D., Bishop S. M., Acott T. S., Brennan R. G., Scott J. D. Interaction of the regulatory subunit (RII) of cAMP-dependent protein kinase with RII-anchoring proteins occurs through an amphipathic helix binding motif. J Biol Chem. 1991 Aug 5;266(22):14188–14192. [PubMed] [Google Scholar]
  12. Carr D. W., Stofko-Hahn R. E., Fraser I. D., Cone R. D., Scott J. D. Localization of the cAMP-dependent protein kinase to the postsynaptic densities by A-kinase anchoring proteins. Characterization of AKAP 79. J Biol Chem. 1992 Aug 25;267(24):16816–16823. [PubMed] [Google Scholar]
  13. Coghlan V. M., Perrino B. A., Howard M., Langeberg L. K., Hicks J. B., Gallatin W. M., Scott J. D. Association of protein kinase A and protein phosphatase 2B with a common anchoring protein. Science. 1995 Jan 6;267(5194):108–111. doi: 10.1126/science.7528941. [DOI] [PubMed] [Google Scholar]
  14. Colledge M., Dean R. A., Scott G. K., Langeberg L. K., Huganir R. L., Scott J. D. Targeting of PKA to glutamate receptors through a MAGUK-AKAP complex. Neuron. 2000 Jul;27(1):107–119. doi: 10.1016/s0896-6273(00)00013-1. [DOI] [PubMed] [Google Scholar]
  15. Colledge M., Scott J. D. AKAPs: from structure to function. Trends Cell Biol. 1999 Jun;9(6):216–221. doi: 10.1016/s0962-8924(99)01558-5. [DOI] [PubMed] [Google Scholar]
  16. Cong M., Perry S. J., Lin F. T., Fraser I. D., Hu L. A., Chen W., Pitcher J. A., Scott J. D., Lefkowitz R. J. Regulation of membrane targeting of the G protein-coupled receptor kinase 2 by protein kinase A and its anchoring protein AKAP79. J Biol Chem. 2001 Jan 22;276(18):15192–15199. doi: 10.1074/jbc.M009130200. [DOI] [PubMed] [Google Scholar]
  17. Dart C., Leyland M. L. Targeting of an A kinase-anchoring protein, AKAP79, to an inwardly rectifying potassium channel, Kir2.1. J Biol Chem. 2001 Apr 3;276(23):20499–20505. doi: 10.1074/jbc.M101425200. [DOI] [PubMed] [Google Scholar]
  18. Dell'Acqua M. L., Faux M. C., Thorburn J., Thorburn A., Scott J. D. Membrane-targeting sequences on AKAP79 bind phosphatidylinositol-4, 5-bisphosphate. EMBO J. 1998 Apr 15;17(8):2246–2260. doi: 10.1093/emboj/17.8.2246. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Dell'Acqua Mark L., Dodge Kimberly L., Tavalin Steven J., Scott John D. Mapping the protein phosphatase-2B anchoring site on AKAP79. Binding and inhibition of phosphatase activity are mediated by residues 315-360. J Biol Chem. 2002 Sep 26;277(50):48796–48802. doi: 10.1074/jbc.M207833200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Dodge K., Scott J. D. AKAP79 and the evolution of the AKAP model. FEBS Lett. 2000 Jun 30;476(1-2):58–61. doi: 10.1016/s0014-5793(00)01671-9. [DOI] [PubMed] [Google Scholar]
  21. Fan G., Shumay E., Malbon C. C., Wang H. c-Src tyrosine kinase binds the beta 2-adrenergic receptor via phospho-Tyr-350, phosphorylates G-protein-linked receptor kinase 2, and mediates agonist-induced receptor desensitization. J Biol Chem. 2001 Jan 22;276(16):13240–13247. doi: 10.1074/jbc.M011578200. [DOI] [PubMed] [Google Scholar]
  22. Fan G., Shumay E., Wang H., Malbon C. C. The scaffold protein gravin (cAMP-dependent protein kinase-anchoring protein 250) binds the beta 2-adrenergic receptor via the receptor cytoplasmic Arg-329 to Leu-413 domain and provides a mobile scaffold during desensitization. J Biol Chem. 2001 Apr 17;276(26):24005–24014. doi: 10.1074/jbc.M011199200. [DOI] [PubMed] [Google Scholar]
  23. Farazi T. A., Waksman G., Gordon J. I. The biology and enzymology of protein N-myristoylation. J Biol Chem. 2001 Aug 29;276(43):39501–39504. doi: 10.1074/jbc.R100042200. [DOI] [PubMed] [Google Scholar]
  24. Faux M. C., Scott J. D. Regulation of the AKAP79-protein kinase C interaction by Ca2+/Calmodulin. J Biol Chem. 1997 Jul 4;272(27):17038–17044. doi: 10.1074/jbc.272.27.17038. [DOI] [PubMed] [Google Scholar]
  25. Fraser I. D., Cong M., Kim J., Rollins E. N., Daaka Y., Lefkowitz R. J., Scott J. D. Assembly of an A kinase-anchoring protein-beta(2)-adrenergic receptor complex facilitates receptor phosphorylation and signaling. Curr Biol. 2000 Apr 6;10(7):409–412. doi: 10.1016/s0960-9822(00)00419-x. [DOI] [PubMed] [Google Scholar]
  26. Gelman Irwin H. The role of SSeCKS/gravin/AKAP12 scaffolding proteins in the spaciotemporal control of signaling pathways in oncogenesis and development . Front Biosci. 2002 Aug 1;7:d1782–d1797. doi: 10.2741/A879. [DOI] [PubMed] [Google Scholar]
  27. Glantz S. B., Li Y., Rubin C. S. Characterization of distinct tethering and intracellular targeting domains in AKAP75, a protein that links cAMP-dependent protein kinase II beta to the cytoskeleton. J Biol Chem. 1993 Jun 15;268(17):12796–12804. [PubMed] [Google Scholar]
  28. Gomez Lisa L., Alam Shuvo, Smith Karen E., Horne Eric, Dell'Acqua Mark L. Regulation of A-kinase anchoring protein 79/150-cAMP-dependent protein kinase postsynaptic targeting by NMDA receptor activation of calcineurin and remodeling of dendritic actin. J Neurosci. 2002 Aug 15;22(16):7027–7044. doi: 10.1523/JNEUROSCI.22-16-07027.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Gordon J. I., Duronio R. J., Rudnick D. A., Adams S. P., Gokel G. W. Protein N-myristoylation. J Biol Chem. 1991 May 15;266(14):8647–8650. [PubMed] [Google Scholar]
  30. Grove B. D., Bruchey A. K. Intracellular distribution of gravin, a PKA and PKC binding protein, in vascular endothelial cells. J Vasc Res. 2001 Mar-Apr;38(2):163–175. doi: 10.1159/000051043. [DOI] [PubMed] [Google Scholar]
  31. Hall R. A., Premont R. T., Lefkowitz R. J. Heptahelical receptor signaling: beyond the G protein paradigm. J Cell Biol. 1999 May 31;145(5):927–932. doi: 10.1083/jcb.145.5.927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Herberg F. W., Maleszka A., Eide T., Vossebein L., Tasken K. Analysis of A-kinase anchoring protein (AKAP) interaction with protein kinase A (PKA) regulatory subunits: PKA isoform specificity in AKAP binding. J Mol Biol. 2000 Apr 28;298(2):329–339. doi: 10.1006/jmbi.2000.3662. [DOI] [PubMed] [Google Scholar]
  33. Hirsch A. H., Glantz S. B., Li Y., You Y., Rubin C. S. Cloning and expression of an intron-less gene for AKAP 75, an anchor protein for the regulatory subunit of cAMP-dependent protein kinase II beta. J Biol Chem. 1992 Feb 5;267(4):2131–2134. [PubMed] [Google Scholar]
  34. Hubbard S. R., Till J. H. Protein tyrosine kinase structure and function. Annu Rev Biochem. 2000;69:373–398. doi: 10.1146/annurev.biochem.69.1.373. [DOI] [PubMed] [Google Scholar]
  35. Karoor V., Malbon C. C. G-protein-linked receptors as substrates for tyrosine kinases: cross-talk in signaling. Adv Pharmacol. 1998;42:425–428. doi: 10.1016/s1054-3589(08)60779-6. [DOI] [PubMed] [Google Scholar]
  36. Karoor V., Malbon C. C. Insulin-like growth factor receptor-1 stimulates phosphorylation of the beta2-adrenergic receptor in vivo on sites distinct from those phosphorylated in response to insulin. J Biol Chem. 1996 Nov 15;271(46):29347–29352. doi: 10.1074/jbc.271.46.29347. [DOI] [PubMed] [Google Scholar]
  37. Karoor V., Shih M., Tholanikunnel B., Malbon C. C. Regulating expression and function of G-protein-linked receptors. Prog Neurobiol. 1996 Apr;48(6):555–568. doi: 10.1016/0301-0082(96)00004-4. [DOI] [PubMed] [Google Scholar]
  38. Karoor V., Wang L., Wang H. Y., Malbon C. C. Insulin stimulates sequestration of beta-adrenergic receptors and enhanced association of beta-adrenergic receptors with Grb2 via tyrosine 350. J Biol Chem. 1998 Dec 4;273(49):33035–33041. doi: 10.1074/jbc.273.49.33035. [DOI] [PubMed] [Google Scholar]
  39. Kashishian A., Howard M., Loh C., Gallatin W. M., Hoekstra M. F., Lai Y. AKAP79 inhibits calcineurin through a site distinct from the immunophilin-binding region. J Biol Chem. 1998 Oct 16;273(42):27412–27419. doi: 10.1074/jbc.273.42.27412. [DOI] [PubMed] [Google Scholar]
  40. Klauck T. M., Faux M. C., Labudda K., Langeberg L. K., Jaken S., Scott J. D. Coordination of three signaling enzymes by AKAP79, a mammalian scaffold protein. Science. 1996 Mar 15;271(5255):1589–1592. doi: 10.1126/science.271.5255.1589. [DOI] [PubMed] [Google Scholar]
  41. Lin F., Wang H. y., Malbon C. C. Gravin-mediated formation of signaling complexes in beta 2-adrenergic receptor desensitization and resensitization. J Biol Chem. 2000 Jun 23;275(25):19025–19034. doi: 10.1074/jbc.275.25.19025. [DOI] [PubMed] [Google Scholar]
  42. Lohmann S. M., DeCamilli P., Einig I., Walter U. High-affinity binding of the regulatory subunit (RII) of cAMP-dependent protein kinase to microtubule-associated and other cellular proteins. Proc Natl Acad Sci U S A. 1984 Nov;81(21):6723–6727. doi: 10.1073/pnas.81.21.6723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Luttrell L. M., Daaka Y., Della Rocca G. J., Lefkowitz R. J. G protein-coupled receptors mediate two functionally distinct pathways of tyrosine phosphorylation in rat 1a fibroblasts. Shc phosphorylation and receptor endocytosis correlate with activation of Erk kinases. J Biol Chem. 1997 Dec 12;272(50):31648–31656. doi: 10.1074/jbc.272.50.31648. [DOI] [PubMed] [Google Scholar]
  44. Matsubara Mamoru, Titani Koiti, Taniguchi Hisaaki, Hayashi Nobuihiro. Direct involvement of protein myristoylation in myristoylated alanine-rich C kinase substrate (MARCKS)-calmodulin interaction. J Biol Chem. 2003 Sep 23;278(49):48898–48902. doi: 10.1074/jbc.M305488200. [DOI] [PubMed] [Google Scholar]
  45. McLaughlin S., Aderem A. The myristoyl-electrostatic switch: a modulator of reversible protein-membrane interactions. Trends Biochem Sci. 1995 Jul;20(7):272–276. doi: 10.1016/s0968-0004(00)89042-8. [DOI] [PubMed] [Google Scholar]
  46. McLaughlin Stuart, Wang Jiyao, Gambhir Alok, Murray Diana. PIP(2) and proteins: interactions, organization, and information flow. Annu Rev Biophys Biomol Struct. 2001 Oct 25;31:151–175. doi: 10.1146/annurev.biophys.31.082901.134259. [DOI] [PubMed] [Google Scholar]
  47. McLaughlin Stuart, Wang Jiyao, Gambhir Alok, Murray Diana. PIP(2) and proteins: interactions, organization, and information flow. Annu Rev Biophys Biomol Struct. 2001 Oct 25;31:151–175. doi: 10.1146/annurev.biophys.31.082901.134259. [DOI] [PubMed] [Google Scholar]
  48. Michel Jennifer J. Carlisle, Scott John D. AKAP mediated signal transduction. Annu Rev Pharmacol Toxicol. 2002;42:235–257. doi: 10.1146/annurev.pharmtox.42.083101.135801. [DOI] [PubMed] [Google Scholar]
  49. Morris A. J., Malbon C. C. Physiological regulation of G protein-linked signaling. Physiol Rev. 1999 Oct;79(4):1373–1430. doi: 10.1152/physrev.1999.79.4.1373. [DOI] [PubMed] [Google Scholar]
  50. Nauert J. B., Klauck T. M., Langeberg L. K., Scott J. D. Gravin, an autoantigen recognized by serum from myasthenia gravis patients, is a kinase scaffold protein. Curr Biol. 1997 Jan 1;7(1):52–62. doi: 10.1016/s0960-9822(06)00027-3. [DOI] [PubMed] [Google Scholar]
  51. Nigg E. A., Schäfer G., Hilz H., Eppenberger H. M. Cyclic-AMP-dependent protein kinase type II is associated with the Golgi complex and with centrosomes. Cell. 1985 Jul;41(3):1039–1051. doi: 10.1016/s0092-8674(85)80084-2. [DOI] [PubMed] [Google Scholar]
  52. Oliveria Seth F., Gomez Lisa L., Dell'Acqua Mark L. Imaging kinase--AKAP79--phosphatase scaffold complexes at the plasma membrane in living cells using FRET microscopy. J Cell Biol. 2002 Dec 30;160(1):101–112. doi: 10.1083/jcb.200209127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Piontek Jörg, Brandt Roland. Differential and regulated binding of cAMP-dependent protein kinase and protein kinase C isoenzymes to gravin in human model neurons: Evidence that gravin provides a dynamic platform for the localization for kinases during neuronal development. J Biol Chem. 2003 Jul 10;278(40):38970–38979. doi: 10.1074/jbc.M306749200. [DOI] [PubMed] [Google Scholar]
  54. Rios R. M., Celati C., Lohmann S. M., Bornens M., Keryer G. Identification of a high affinity binding protein for the regulatory subunit RII beta of cAMP-dependent protein kinase in Golgi enriched membranes of human lymphoblasts. EMBO J. 1992 May;11(5):1723–1731. doi: 10.1002/j.1460-2075.1992.tb05224.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Rossi E. A., Li Z., Feng H., Rubin C. S. Characterization of the targeting, binding, and phosphorylation site domains of an A kinase anchor protein and a myristoylated alanine-rich C kinase substrate-like analog that are encoded by a single gene. J Biol Chem. 1999 Sep 17;274(38):27201–27210. doi: 10.1074/jbc.274.38.27201. [DOI] [PubMed] [Google Scholar]
  56. Roychowdhury S., Rasenick M. M. Tubulin-G protein association stabilizes GTP binding and activates GTPase: cytoskeletal participation in neuronal signal transduction. Biochemistry. 1994 Aug 16;33(32):9800–9805. doi: 10.1021/bi00198a052. [DOI] [PubMed] [Google Scholar]
  57. Sarkar D., Erlichman J., Rubin C. S. Identification of a calmodulin-binding protein that co-purifies with the regulatory subunit of brain protein kinase II. J Biol Chem. 1984 Aug 10;259(15):9840–9846. [PubMed] [Google Scholar]
  58. Sarnago S., Elorza A., Mayor F., Jr Agonist-dependent phosphorylation of the G protein-coupled receptor kinase 2 (GRK2) by Src tyrosine kinase. J Biol Chem. 1999 Nov 26;274(48):34411–34416. doi: 10.1074/jbc.274.48.34411. [DOI] [PubMed] [Google Scholar]
  59. Shih M., Lin F., Scott J. D., Wang H. Y., Malbon C. C. Dynamic complexes of beta2-adrenergic receptors with protein kinases and phosphatases and the role of gravin. J Biol Chem. 1999 Jan 15;274(3):1588–1595. doi: 10.1074/jbc.274.3.1588. [DOI] [PubMed] [Google Scholar]
  60. Shih M., Lin F., Scott J. D., Wang H. Y., Malbon C. C. Dynamic complexes of beta2-adrenergic receptors with protein kinases and phosphatases and the role of gravin. J Biol Chem. 1999 Jan 15;274(3):1588–1595. doi: 10.1074/jbc.274.3.1588. [DOI] [PubMed] [Google Scholar]
  61. Shih M., Malbon C. C. Oligodeoxynucleotides antisense to mRNA encoding protein kinase A, protein kinase C, and beta-adrenergic receptor kinase reveal distinctive cell-type-specific roles in agonist-induced desensitization. Proc Natl Acad Sci U S A. 1994 Dec 6;91(25):12193–12197. doi: 10.1073/pnas.91.25.12193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Shih M., Malbon C. C. Protein kinase C deficiency blocks recovery from agonist-induced desensitization. J Biol Chem. 1996 Aug 30;271(35):21478–21483. doi: 10.1074/jbc.271.35.21478. [DOI] [PubMed] [Google Scholar]
  63. Shih M., Malbon C. C. Serum and insulin induce a Grb2-dependent shift in agonist affinity of beta-adrenergic receptors. Cell Signal. 1998 Sep;10(8):575–582. doi: 10.1016/s0898-6568(97)00195-2. [DOI] [PubMed] [Google Scholar]
  64. Shumay Elena, Song Xiaosong, Wang Hsien-yu, Malbon Craig C. pp60Src mediates insulin-stimulated sequestration of the beta(2)-adrenergic receptor: insulin stimulates pp60Src phosphorylation and activation. Mol Biol Cell. 2002 Nov;13(11):3943–3954. doi: 10.1091/mbc.E02-03-0174. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Sorkin Alexander, Von Zastrow Mark. Signal transduction and endocytosis: close encounters of many kinds. Nat Rev Mol Cell Biol. 2002 Aug;3(8):600–614. doi: 10.1038/nrm883. [DOI] [PubMed] [Google Scholar]
  66. Taniguchi H. Protein myristoylation in protein-lipid and protein-protein interactions. Biophys Chem. 1999 Dec 13;82(2-3):129–137. doi: 10.1016/s0301-4622(99)00112-x. [DOI] [PubMed] [Google Scholar]
  67. Tao Jiangchuan, Wang Hsien-Yu, Malbon Craig C. Protein kinase A regulates AKAP250 (gravin) scaffold binding to the beta2-adrenergic receptor. EMBO J. 2003 Dec 15;22(24):6419–6429. doi: 10.1093/emboj/cdg628. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Theurkauf W. E., Vallee R. B. Molecular characterization of the cAMP-dependent protein kinase bound to microtubule-associated protein 2. J Biol Chem. 1982 Mar 25;257(6):3284–3290. [PubMed] [Google Scholar]
  69. Vallee R. B., DiBartolomeis M. J., Theurkauf W. E. A protein kinase bound to the projection portion of MAP 2 (microtubule-associated protein 2). J Cell Biol. 1981 Sep;90(3):568–576. doi: 10.1083/jcb.90.3.568. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Vergères G., Manenti S., Weber T., Stürzinger C. The myristoyl moiety of myristoylated alanine-rich C kinase substrate (MARCKS) and MARCKS-related protein is embedded in the membrane. J Biol Chem. 1995 Aug 25;270(34):19879–19887. doi: 10.1074/jbc.270.34.19879. [DOI] [PubMed] [Google Scholar]
  71. Wang N., Rasenick M. M. Tubulin-G protein interactions involve microtubule polymerization domains. Biochemistry. 1991 Nov 12;30(45):10957–10965. doi: 10.1021/bi00109a021. [DOI] [PubMed] [Google Scholar]
  72. Yamauchi Emiko, Nakatsu Toru, Matsubara Mamoru, Kato Hiroaki, Taniguchi Hisaaki. Crystal structure of a MARCKS peptide containing the calmodulin-binding domain in complex with Ca2+-calmodulin. Nat Struct Biol. 2003 Mar;10(3):226–231. doi: 10.1038/nsb900. [DOI] [PubMed] [Google Scholar]
  73. Zhang Wenyi, Crocker Evan, McLaughlin Stuart, Smith Steven O. Binding of peptides with basic and aromatic residues to bilayer membranes: phenylalanine in the myristoylated alanine-rich C kinase substrate effector domain penetrates into the hydrophobic core of the bilayer. J Biol Chem. 2003 Apr 1;278(24):21459–21466. doi: 10.1074/jbc.M301652200. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES