Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 Apr 1;379(Pt 1):71–78. doi: 10.1042/BJ20031143

Defining the function of xeroderma pigmentosum group F protein in psoralen interstrand cross-link-mediated DNA repair and mutagenesis.

Zhiwen Chen 1, Xiaoxin Susan Xu 1, Jason Harrison 1, Gan Wang 1
PMCID: PMC1224063  PMID: 14728600

Abstract

Many commonly used drugs, such as psoralen and cisplatin, can generate a very unique type of DNA damage, namely ICL (interstrand cross-link). An ICL can severely block DNA replication and transcription and cause programmed cell death. The molecular mechanism of repairing the ICL damage has not been well established. We have studied the role of XPF (xeroderma pigmentosum group F) protein in psoralen-induced ICL-mediated DNA repair and mutagenesis. The results obtained from our mutagenesis studies revealed a very similar mutation frequency in both human normal fibroblast cells and XPF cells. The mutation spectra generated in both cells, however, were very different: most of the mutations generated in the normal fibroblast cells were T167-->A transversions, whereas most of the mutations generated in the XPF cells were T167-->G transversions. When a wild-type XPF gene cDNA was stably transfected into the XPF cells, the T167-->A mutations were increased and the T167-->G mutations were decreased. We also determined the DNA repair capability of the XPF cells using both the host-cell reactivation and the in vitro DNA repair assays. The results obtained from the host-cell reactivation experiments revealed an effective reactivation of a luciferase reporter gene from the psoralen-damaged plasmid in the XPF cells. The results obtained from the in vitro DNA repair experiments demonstrated that the XPF nuclear extract is normal in introducing dual incisions during the nucleotide excision repair process. These results suggest that the XPF protein has important roles in the psoralen ICL-mediated DNA repair and mutagenesis.

Full Text

The Full Text of this article is available as a PDF (159.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barre F. X., Asseline U., Harel-Bellan A. Asymmetric recognition of psoralen interstrand crosslinks by the nucleotide excision repair and the error-prone repair pathways. J Mol Biol. 1999 Mar 12;286(5):1379–1387. doi: 10.1006/jmbi.1999.2550. [DOI] [PubMed] [Google Scholar]
  2. Boddy M. N., Gaillard P. H., McDonald W. H., Shanahan P., Yates J. R., 3rd, Russell P. Mus81-Eme1 are essential components of a Holliday junction resolvase. Cell. 2001 Nov 16;107(4):537–548. doi: 10.1016/s0092-8674(01)00536-0. [DOI] [PubMed] [Google Scholar]
  3. Brookman K. W., Lamerdin J. E., Thelen M. P., Hwang M., Reardon J. T., Sancar A., Zhou Z. Q., Walter C. A., Parris C. N., Thompson L. H. ERCC4 (XPF) encodes a human nucleotide excision repair protein with eukaryotic recombination homologs. Mol Cell Biol. 1996 Nov;16(11):6553–6562. doi: 10.1128/mcb.16.11.6553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chen X. B., Melchionna R., Denis C. M., Gaillard P. H., Blasina A., Van de Weyer I., Boddy M. N., Russell P., Vialard J., McGowan C. H. Human Mus81-associated endonuclease cleaves Holliday junctions in vitro. Mol Cell. 2001 Nov;8(5):1117–1127. doi: 10.1016/s1097-2765(01)00375-6. [DOI] [PubMed] [Google Scholar]
  5. Cleaver J. E. Defective repair replication of DNA in xeroderma pigmentosum. Nature. 1968 May 18;218(5142):652–656. doi: 10.1038/218652a0. [DOI] [PubMed] [Google Scholar]
  6. Drapkin R., Reardon J. T., Ansari A., Huang J. C., Zawel L., Ahn K., Sancar A., Reinberg D. Dual role of TFIIH in DNA excision repair and in transcription by RNA polymerase II. Nature. 1994 Apr 21;368(6473):769–772. doi: 10.1038/368769a0. [DOI] [PubMed] [Google Scholar]
  7. Grossmann K. F., Ward A. M., Matkovic M. E., Folias A. E., Moses R. E. S. cerevisiae has three pathways for DNA interstrand crosslink repair. Mutat Res. 2001 Dec 19;487(3-4):73–83. doi: 10.1016/s0921-8777(01)00106-9. [DOI] [PubMed] [Google Scholar]
  8. Havre P. A., Glazer P. M. Targeted mutagenesis of simian virus 40 DNA mediated by a triple helix-forming oligonucleotide. J Virol. 1993 Dec;67(12):7324–7331. doi: 10.1128/jvi.67.12.7324-7331.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Havre P. A., Gunther E. J., Gasparro F. P., Glazer P. M. Targeted mutagenesis of DNA using triple helix-forming oligonucleotides linked to psoralen. Proc Natl Acad Sci U S A. 1993 Aug 15;90(16):7879–7883. doi: 10.1073/pnas.90.16.7879. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hearst J. E., Isaacs S. T., Kanne D., Rapoport H., Straub K. The reaction of the psoralens with deoxyribonucleic acid. Q Rev Biophys. 1984 Feb;17(1):1–44. doi: 10.1017/s0033583500005242. [DOI] [PubMed] [Google Scholar]
  11. Hey Thomas, Lipps Georg, Sugasawa Kaoru, Iwai Shigenori, Hanaoka Fumio, Krauss Gerhard. The XPC-HR23B complex displays high affinity and specificity for damaged DNA in a true-equilibrium fluorescence assay. Biochemistry. 2002 May 28;41(21):6583–6587. doi: 10.1021/bi012202t. [DOI] [PubMed] [Google Scholar]
  12. Huang J. C., Svoboda D. L., Reardon J. T., Sancar A. Human nucleotide excision nuclease removes thymine dimers from DNA by incising the 22nd phosphodiester bond 5' and the 6th phosphodiester bond 3' to the photodimer. Proc Natl Acad Sci U S A. 1992 Apr 15;89(8):3664–3668. doi: 10.1073/pnas.89.8.3664. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hwang B. J., Liao J. C., Chu G. Isolation of a cDNA encoding a UV-damaged DNA binding factor defective in xeroderma pigmentosum group E cells. Mutat Res. 1996 Jan 2;362(1):105–117. doi: 10.1016/0921-8777(95)00040-2. [DOI] [PubMed] [Google Scholar]
  14. Hwang B. J., Toering S., Francke U., Chu G. p48 Activates a UV-damaged-DNA binding factor and is defective in xeroderma pigmentosum group E cells that lack binding activity. Mol Cell Biol. 1998 Jul;18(7):4391–4399. doi: 10.1128/mcb.18.7.4391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hwang J. R., Moncollin V., Vermeulen W., Seroz T., van Vuuren H., Hoeijmakers J. H., Egly J. M. A 3' --> 5' XPB helicase defect in repair/transcription factor TFIIH of xeroderma pigmentosum group B affects both DNA repair and transcription. J Biol Chem. 1996 Jul 5;271(27):15898–15904. doi: 10.1074/jbc.271.27.15898. [DOI] [PubMed] [Google Scholar]
  16. Johnson R. E., Kondratick C. M., Prakash S., Prakash L. hRAD30 mutations in the variant form of xeroderma pigmentosum. Science. 1999 Jul 9;285(5425):263–265. doi: 10.1126/science.285.5425.263. [DOI] [PubMed] [Google Scholar]
  17. Kohn K. W. Beyond DNA cross-linking: history and prospects of DNA-targeted cancer treatment--fifteenth Bruce F. Cain Memorial Award Lecture. Cancer Res. 1996 Dec 15;56(24):5533–5546. [PubMed] [Google Scholar]
  18. Kumaresan Kandallu R., Hwang Mona, Thelen Michael P., Lambert Muriel W. Contribution of XPF functional domains to the 5' and 3' incisions produced at the site of a psoralen interstrand cross-link. Biochemistry. 2002 Jan 22;41(3):890–896. doi: 10.1021/bi011614z. [DOI] [PubMed] [Google Scholar]
  19. Kuraoka I., Kobertz W. R., Ariza R. R., Biggerstaff M., Essigmann J. M., Wood R. D. Repair of an interstrand DNA cross-link initiated by ERCC1-XPF repair/recombination nuclease. J Biol Chem. 2000 Aug 25;275(34):26632–26636. doi: 10.1074/jbc.C000337200. [DOI] [PubMed] [Google Scholar]
  20. Lawrence C. W., Hinkle D. C. DNA polymerase zeta and the control of DNA damage induced mutagenesis in eukaryotes. Cancer Surv. 1996;28:21–31. [PubMed] [Google Scholar]
  21. Li L., Peterson C. A., Zhang X., Legerski R. J. Requirement for PCNA and RPA in interstrand crosslink-induced DNA synthesis. Nucleic Acids Res. 2000 Mar 15;28(6):1424–1427. doi: 10.1093/nar/28.6.1424. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Masutani C., Kusumoto R., Yamada A., Dohmae N., Yokoi M., Yuasa M., Araki M., Iwai S., Takio K., Hanaoka F. The XPV (xeroderma pigmentosum variant) gene encodes human DNA polymerase eta. Nature. 1999 Jun 17;399(6737):700–704. doi: 10.1038/21447. [DOI] [PubMed] [Google Scholar]
  23. Matsunaga T., Park C. H., Bessho T., Mu D., Sancar A. Replication protein A confers structure-specific endonuclease activities to the XPF-ERCC1 and XPG subunits of human DNA repair excision nuclease. J Biol Chem. 1996 May 10;271(19):11047–11050. doi: 10.1074/jbc.271.19.11047. [DOI] [PubMed] [Google Scholar]
  24. McHugh P. J., Spanswick V. J., Hartley J. A. Repair of DNA interstrand crosslinks: molecular mechanisms and clinical relevance. Lancet Oncol. 2001 Aug;2(8):483–490. doi: 10.1016/S1470-2045(01)00454-5. [DOI] [PubMed] [Google Scholar]
  25. Mu D., Bessho T., Nechev L. V., Chen D. J., Harris T. M., Hearst J. E., Sancar A. DNA interstrand cross-links induce futile repair synthesis in mammalian cell extracts. Mol Cell Biol. 2000 Apr;20(7):2446–2454. doi: 10.1128/mcb.20.7.2446-2454.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Nelson J. R., Lawrence C. W., Hinkle D. C. Thymine-thymine dimer bypass by yeast DNA polymerase zeta. Science. 1996 Jun 14;272(5268):1646–1649. doi: 10.1126/science.272.5268.1646. [DOI] [PubMed] [Google Scholar]
  27. Nocentini S., Coin F., Saijo M., Tanaka K., Egly J. M. DNA damage recognition by XPA protein promotes efficient recruitment of transcription factor II H. J Biol Chem. 1997 Sep 12;272(37):22991–22994. doi: 10.1074/jbc.272.37.22991. [DOI] [PubMed] [Google Scholar]
  28. O'Donovan A., Davies A. A., Moggs J. G., West S. C., Wood R. D. XPG endonuclease makes the 3' incision in human DNA nucleotide excision repair. Nature. 1994 Sep 29;371(6496):432–435. doi: 10.1038/371432a0. [DOI] [PubMed] [Google Scholar]
  29. Park C. H., Mu D., Reardon J. T., Sancar A. The general transcription-repair factor TFIIH is recruited to the excision repair complex by the XPA protein independent of the TFIIE transcription factor. J Biol Chem. 1995 Mar 3;270(9):4896–4902. doi: 10.1074/jbc.270.9.4896. [DOI] [PubMed] [Google Scholar]
  30. Payne A., Chu G. Xeroderma pigmentosum group E binding factor recognizes a broad spectrum of DNA damage. Mutat Res. 1994 Oct 1;310(1):89–102. doi: 10.1016/0027-5107(94)90012-4. [DOI] [PubMed] [Google Scholar]
  31. Sijbers A. M., de Laat W. L., Ariza R. R., Biggerstaff M., Wei Y. F., Moggs J. G., Carter K. C., Shell B. K., Evans E., de Jong M. C. Xeroderma pigmentosum group F caused by a defect in a structure-specific DNA repair endonuclease. Cell. 1996 Sep 6;86(5):811–822. doi: 10.1016/s0092-8674(00)80155-5. [DOI] [PubMed] [Google Scholar]
  32. Sugasawa K., Ng J. M., Masutani C., Iwai S., van der Spek P. J., Eker A. P., Hanaoka F., Bootsma D., Hoeijmakers J. H. Xeroderma pigmentosum group C protein complex is the initiator of global genome nucleotide excision repair. Mol Cell. 1998 Aug;2(2):223–232. doi: 10.1016/s1097-2765(00)80132-x. [DOI] [PubMed] [Google Scholar]
  33. Tissier A., McDonald J. P., Frank E. G., Woodgate R. poliota, a remarkably error-prone human DNA polymerase. Genes Dev. 2000 Jul 1;14(13):1642–1650. [PMC free article] [PubMed] [Google Scholar]
  34. Van Houten B. Nucleotide excision repair in Escherichia coli. Microbiol Rev. 1990 Mar;54(1):18–51. doi: 10.1128/mr.54.1.18-51.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Vasquez Karen M., Christensen Jesper, Li Lei, Finch Rick A., Glazer Peter M. Human XPA and RPA DNA repair proteins participate in specific recognition of triplex-induced helical distortions. Proc Natl Acad Sci U S A. 2002 Apr 23;99(9):5848–5853. doi: 10.1073/pnas.082193799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Volker M., Moné M. J., Karmakar P., van Hoffen A., Schul W., Vermeulen W., Hoeijmakers J. H., van Driel R., van Zeeland A. A., Mullenders L. H. Sequential assembly of the nucleotide excision repair factors in vivo. Mol Cell. 2001 Jul;8(1):213–224. doi: 10.1016/s1097-2765(01)00281-7. [DOI] [PubMed] [Google Scholar]
  37. Wakasugi M., Sancar A. Order of assembly of human DNA repair excision nuclease. J Biol Chem. 1999 Jun 25;274(26):18759–18768. doi: 10.1074/jbc.274.26.18759. [DOI] [PubMed] [Google Scholar]
  38. Wang G., Chen Z., Zhang S., Wilson G. L., Jing K. Detection and determination of oligonucleotide triplex formation-mediated transcription-coupled DNA repair in HeLa nuclear extracts. Nucleic Acids Res. 2001 Apr 15;29(8):1801–1807. doi: 10.1093/nar/29.8.1801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Wang G., Glazer P. M. Altered repair of targeted psoralen photoadducts in the context of an oligonucleotide-mediated triple helix. J Biol Chem. 1995 Sep 22;270(38):22595–22601. doi: 10.1074/jbc.270.38.22595. [DOI] [PubMed] [Google Scholar]
  40. Wang G., Levy D. D., Seidman M. M., Glazer P. M. Targeted mutagenesis in mammalian cells mediated by intracellular triple helix formation. Mol Cell Biol. 1995 Mar;15(3):1759–1768. doi: 10.1128/mcb.15.3.1759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Wang X., Peterson C. A., Zheng H., Nairn R. S., Legerski R. J., Li L. Involvement of nucleotide excision repair in a recombination-independent and error-prone pathway of DNA interstrand cross-link repair. Mol Cell Biol. 2001 Feb;21(3):713–720. doi: 10.1128/MCB.21.3.713-720.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Wang Z., Svejstrup J. Q., Feaver W. J., Wu X., Kornberg R. D., Friedberg E. C. Transcription factor b (TFIIH) is required during nucleotide-excision repair in yeast. Nature. 1994 Mar 3;368(6466):74–76. doi: 10.1038/368074a0. [DOI] [PubMed] [Google Scholar]
  43. Winkler G. S., Araújo S. J., Fiedler U., Vermeulen W., Coin F., Egly J. M., Hoeijmakers J. H., Wood R. D., Timmers H. T., Weeda G. TFIIH with inactive XPD helicase functions in transcription initiation but is defective in DNA repair. J Biol Chem. 2000 Feb 11;275(6):4258–4266. doi: 10.1074/jbc.275.6.4258. [DOI] [PubMed] [Google Scholar]
  44. Wood R. D. DNA damage recognition during nucleotide excision repair in mammalian cells. Biochimie. 1999 Jan-Feb;81(1-2):39–44. doi: 10.1016/s0300-9084(99)80036-4. [DOI] [PubMed] [Google Scholar]
  45. You Jin-Sam, Wang Mu, Lee Suk-Hee. Biochemical analysis of the damage recognition process in nucleotide excision repair. J Biol Chem. 2002 Dec 13;278(9):7476–7485. doi: 10.1074/jbc.M210603200. [DOI] [PubMed] [Google Scholar]
  46. Zhang N., Zhang X., Peterson C., Li L., Legerski R. Differential processing of UV mimetic and interstrand crosslink damage by XPF cell extracts. Nucleic Acids Res. 2000 Dec 1;28(23):4800–4804. doi: 10.1093/nar/28.23.4800. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Zhang Y., Yuan F., Wu X., Rechkoblit O., Taylor J. S., Geacintov N. E., Wang Z. Error-prone lesion bypass by human DNA polymerase eta. Nucleic Acids Res. 2000 Dec 1;28(23):4717–4724. doi: 10.1093/nar/28.23.4717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Zhang Y., Yuan F., Wu X., Wang M., Rechkoblit O., Taylor J. S., Geacintov N. E., Wang Z. Error-free and error-prone lesion bypass by human DNA polymerase kappa in vitro. Nucleic Acids Res. 2000 Nov 1;28(21):4138–4146. doi: 10.1093/nar/28.21.4138. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Zhang Y., Yuan F., Xin H., Wu X., Rajpal D. K., Yang D., Wang Z. Human DNA polymerase kappa synthesizes DNA with extraordinarily low fidelity. Nucleic Acids Res. 2000 Nov 1;28(21):4147–4156. doi: 10.1093/nar/28.21.4147. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES