Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 Apr 1;379(Pt 1):23–29. doi: 10.1042/BJ20031867

Repression of Smad4 transcriptional activity by SUMO modification.

Jianyin Long 1, Guannan Wang 1, Dongming He 1, Fang Liu 1
PMCID: PMC1224064  PMID: 14750902

Abstract

Smad4 plays a key role in TGF-beta (transforming growth factor beta)/Smad-mediated transcriptional responses. We show that Smad4 is sumoylated both in vivo and in vitro. Recent studies showed that sumoylation of Smad4 regulated its stability, but the effect of sumoylation on the intrinsic transcriptional activity of Smad4 was not defined. We show that overexpression of SUMO (small ubiquitin-related modifier)-1 and Ubc9 can inhibit a TGF-beta-responsive reporter gene, whereas co-transfection with SUMO-1 protease-1 (SuPr-1) can increase the TGF-beta response. We show further that mutation of the Smad4 sumoylation sites or co-transfection with SuPr-1 greatly increases Smad4 transcriptional activity. Moreover, direct fusion of SUMO-1 to the sumoylation mutant Smad4 potently inhibits its transcriptional activity. Thus, as it is being rapidly discovered that sumoylation inhibits the activities of many transcription factors, sumoylation also represses Smad4 transcriptional activity. The net effect of sumoylation of Smad4 can therefore be either stimulatory or inhibitory, depending on the target promoter that is analysed.

Full Text

The Full Text of this article is available as a PDF (231.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Best Jennifer L., Ganiatsas Soula, Agarwal Sadhana, Changou Austin, Salomoni Paolo, Shirihai Orian, Meluh Pamela B., Pandolfi Pier Paolo, Zon Leonard I. SUMO-1 protease-1 regulates gene transcription through PML. Mol Cell. 2002 Oct;10(4):843–855. doi: 10.1016/s1097-2765(02)00699-8. [DOI] [PubMed] [Google Scholar]
  2. Denissova N. G., Pouponnot C., Long J., He D., Liu F. Transforming growth factor beta -inducible independent binding of SMAD to the Smad7 promoter. Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6397–6402. doi: 10.1073/pnas.090099297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Derynck R., Zhang Y., Feng X. H. Smads: transcriptional activators of TGF-beta responses. Cell. 1998 Dec 11;95(6):737–740. doi: 10.1016/s0092-8674(00)81696-7. [DOI] [PubMed] [Google Scholar]
  4. Desterro J. M., Rodriguez M. S., Hay R. T. SUMO-1 modification of IkappaBalpha inhibits NF-kappaB activation. Mol Cell. 1998 Aug;2(2):233–239. doi: 10.1016/s1097-2765(00)80133-1. [DOI] [PubMed] [Google Scholar]
  5. Girdwood David, Bumpass Donna, Vaughan Owen A., Thain Alison, Anderson Lisa A., Snowden Andrew W., Garcia-Wilson Elisa, Perkins Neil D., Hay Ronald T. P300 transcriptional repression is mediated by SUMO modification. Mol Cell. 2003 Apr;11(4):1043–1054. doi: 10.1016/s1097-2765(03)00141-2. [DOI] [PubMed] [Google Scholar]
  6. Kagey Michael H., Melhuish Tiffany A., Wotton David. The polycomb protein Pc2 is a SUMO E3. Cell. 2003 Apr 4;113(1):127–137. doi: 10.1016/s0092-8674(03)00159-4. [DOI] [PubMed] [Google Scholar]
  7. Kahyo T., Nishida T., Yasuda H. Involvement of PIAS1 in the sumoylation of tumor suppressor p53. Mol Cell. 2001 Sep;8(3):713–718. doi: 10.1016/s1097-2765(01)00349-5. [DOI] [PubMed] [Google Scholar]
  8. Kamitani T., Kito K., Nguyen H. P., Wada H., Fukuda-Kamitani T., Yeh E. T. Identification of three major sentrinization sites in PML. J Biol Chem. 1998 Oct 9;273(41):26675–26682. doi: 10.1074/jbc.273.41.26675. [DOI] [PubMed] [Google Scholar]
  9. Lee Pierre S. W., Chang Chenbei, Liu Dong, Derynck Rik. Sumoylation of Smad4, the common Smad mediator of transforming growth factor-beta family signaling. J Biol Chem. 2003 May 11;278(30):27853–27863. doi: 10.1074/jbc.M301755200. [DOI] [PubMed] [Google Scholar]
  10. Lin Xia, Liang Min, Liang Yao-Yun, Brunicardi F. Charles, Feng Xin-Hua. SUMO-1/Ubc9 promotes nuclear accumulation and metabolic stability of tumor suppressor Smad4. J Biol Chem. 2003 Jun 17;278(33):31043–31048. doi: 10.1074/jbc.C300112200. [DOI] [PubMed] [Google Scholar]
  11. Lin Xia, Liang Min, Liang Yao-Yun, Brunicardi F. Charles, Melchior Frauke, Feng Xin-Hua. Activation of transforming growth factor-beta signaling by SUMO-1 modification of tumor suppressor Smad4/DPC4. J Biol Chem. 2003 Mar 5;278(21):18714–18719. doi: 10.1074/jbc.M302243200. [DOI] [PubMed] [Google Scholar]
  12. Liu F., Pouponnot C., Massagué J. Dual role of the Smad4/DPC4 tumor suppressor in TGFbeta-inducible transcriptional complexes. Genes Dev. 1997 Dec 1;11(23):3157–3167. doi: 10.1101/gad.11.23.3157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Liu Fang. Receptor-regulated Smads in TGF-beta signaling. Front Biosci. 2003 Sep 1;8:s1280–s1303. doi: 10.2741/1149. [DOI] [PubMed] [Google Scholar]
  14. Long Jianyin, Matsuura Isao, He Dongming, Wang Guannan, Shuai Ke, Liu Fang. Repression of Smad transcriptional activity by PIASy, an inhibitor of activated STAT. Proc Natl Acad Sci U S A. 2003 Aug 6;100(17):9791–9796. doi: 10.1073/pnas.1733973100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Mao Y., Sun M., Desai S. D., Liu L. F. SUMO-1 conjugation to topoisomerase I: A possible repair response to topoisomerase-mediated DNA damage. Proc Natl Acad Sci U S A. 2000 Apr 11;97(8):4046–4051. doi: 10.1073/pnas.080536597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Massagué J., Wotton D. Transcriptional control by the TGF-beta/Smad signaling system. EMBO J. 2000 Apr 17;19(8):1745–1754. doi: 10.1093/emboj/19.8.1745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Melchior F. SUMO--nonclassical ubiquitin. Annu Rev Cell Dev Biol. 2000;16:591–626. doi: 10.1146/annurev.cellbio.16.1.591. [DOI] [PubMed] [Google Scholar]
  18. Ohshima Takayuki, Shimotohno Kunitada. Transforming growth factor-beta-mediated signaling via the p38 MAP kinase pathway activates Smad-dependent transcription through SUMO-1 modification of Smad4. J Biol Chem. 2003 Sep 26;278(51):50833–50842. doi: 10.1074/jbc.M307533200. [DOI] [PubMed] [Google Scholar]
  19. Pichler Andrea, Gast Andreas, Seeler Jacob S., Dejean Anne, Melchior Frauke. The nucleoporin RanBP2 has SUMO1 E3 ligase activity. Cell. 2002 Jan 11;108(1):109–120. doi: 10.1016/s0092-8674(01)00633-x. [DOI] [PubMed] [Google Scholar]
  20. Rangasamy D., Woytek K., Khan S. A., Wilson V. G. SUMO-1 modification of bovine papillomavirus E1 protein is required for intranuclear accumulation. J Biol Chem. 2000 Dec 1;275(48):37999–38004. doi: 10.1074/jbc.M007777200. [DOI] [PubMed] [Google Scholar]
  21. Ross Sarah, Best Jennifer L., Zon Leonard I., Gill Grace. SUMO-1 modification represses Sp3 transcriptional activation and modulates its subnuclear localization. Mol Cell. 2002 Oct;10(4):831–842. doi: 10.1016/s1097-2765(02)00682-2. [DOI] [PubMed] [Google Scholar]
  22. Sachdev S., Bruhn L., Sieber H., Pichler A., Melchior F., Grosschedl R. PIASy, a nuclear matrix-associated SUMO E3 ligase, represses LEF1 activity by sequestration into nuclear bodies. Genes Dev. 2001 Dec 1;15(23):3088–3103. doi: 10.1101/gad.944801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Salghetti S. E., Caudy A. A., Chenoweth J. G., Tansey W. P. Regulation of transcriptional activation domain function by ubiquitin. Science. 2001 Jul 19;293(5535):1651–1653. doi: 10.1126/science.1062079. [DOI] [PubMed] [Google Scholar]
  24. Sapetschnig Alexandra, Rischitor Grigore, Braun Harald, Doll Andreas, Schergaut Marion, Melchior Frauke, Suske Guntram. Transcription factor Sp3 is silenced through SUMO modification by PIAS1. EMBO J. 2002 Oct 1;21(19):5206–5215. doi: 10.1093/emboj/cdf510. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Seeler Jacob-S, Dejean Anne. Nuclear and unclear functions of SUMO. Nat Rev Mol Cell Biol. 2003 Sep;4(9):690–699. doi: 10.1038/nrm1200. [DOI] [PubMed] [Google Scholar]
  26. Shiio Yuzuru, Eisenman Robert N. Histone sumoylation is associated with transcriptional repression. Proc Natl Acad Sci U S A. 2003 Oct 24;100(23):13225–13230. doi: 10.1073/pnas.1735528100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Tatham M. H., Jaffray E., Vaughan O. A., Desterro J. M., Botting C. H., Naismith J. H., Hay R. T. Polymeric chains of SUMO-2 and SUMO-3 are conjugated to protein substrates by SAE1/SAE2 and Ubc9. J Biol Chem. 2001 Jul 12;276(38):35368–35374. doi: 10.1074/jbc.M104214200. [DOI] [PubMed] [Google Scholar]
  28. Verger Alexis, Perdomo José, Crossley Merlin. Modification with SUMO. A role in transcriptional regulation. EMBO Rep. 2003 Feb;4(2):137–142. doi: 10.1038/sj.embor.embor738. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Yang Shen-Hsi, Jaffray Ellis, Hay Ron T., Sharrocks Andrew D. Dynamic interplay of the SUMO and ERK pathways in regulating Elk-1 transcriptional activity. Mol Cell. 2003 Jul;12(1):63–74. doi: 10.1016/s1097-2765(03)00265-x. [DOI] [PubMed] [Google Scholar]
  30. de Caestecker M. P., Yahata T., Wang D., Parks W. T., Huang S., Hill C. S., Shioda T., Roberts A. B., Lechleider R. J. The Smad4 activation domain (SAD) is a proline-rich, p300-dependent transcriptional activation domain. J Biol Chem. 2000 Jan 21;275(3):2115–2122. doi: 10.1074/jbc.275.3.2115. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES