Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 Apr 15;379(Pt 2):309–315. doi: 10.1042/BJ20031682

Ubiquinone is not required for proton conductance by uncoupling protein 1 in yeast mitochondria.

Telma C Esteves 1, Karim S Echtay 1, Tanya Jonassen 1, Catherine F Clarke 1, Martin D Brand 1
PMCID: PMC1224067  PMID: 14680474

Abstract

Q (coenzyme Q or ubiquinone) is reported to be a cofactor obligatory for proton transport by UCPs (uncoupling proteins) in liposomes [Echtay, Winkler and Klingenberg (2000) Nature (London) 408, 609-613] and for increasing the binding of the activator retinoic acid to UCP1 [Tomás, Ledesma and Rial (2002) FEBS Lett. 526, 63-65]. In the present study, yeast ( Saccharomyces cerevisiae ) mutant strains lacking Q and expressing UCP1 were used to determine whether Q was required for UCP function in mitochondria. Wild-type yeast strain and two mutant strains (CENDeltaCOQ3 and CENDeltaCOQ2), both not capable of synthesizing Q, were transformed with the mouse UCP1 gene. UCP1 activity was measured as fatty acid-dependent, GDP-sensitive proton conductance in mitochondria isolated from the cells. The activity of UCP1 was similar in both Q-containing and -deficient yeast mitochondria. We conclude that Q is neither an obligatory cofactor nor an activator of proton transport by UCP1 when it is expressed in yeast mitochondria.

Full Text

The Full Text of this article is available as a PDF (126.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arechaga I., Ledesma A., Rial E. The mitochondrial uncoupling protein UCP1: a gated pore. IUBMB Life. 2001 Sep-Nov;52(3-5):165–173. doi: 10.1080/15216540152845966. [DOI] [PubMed] [Google Scholar]
  2. Arechaga I., Raimbault S., Prieto S., Levi-Meyrueis C., Zaragoza P., Miroux B., Ricquier D., Bouillaud F., Rial E. Cysteine residues are not essential for uncoupling protein function. Biochem J. 1993 Dec 15;296(Pt 3):693–700. doi: 10.1042/bj2960693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ashby M. N., Edwards P. A. Elucidation of the deficiency in two yeast coenzyme Q mutants. Characterization of the structural gene encoding hexaprenyl pyrophosphate synthetase. J Biol Chem. 1990 Aug 5;265(22):13157–13164. [PubMed] [Google Scholar]
  4. Bathgate B., Freebairn E. M., Greenland A. J., Reid G. A. Functional expression of the rat brown adipose tissue uncoupling protein in Saccharomyces cerevisiae. Mol Microbiol. 1992 Feb;6(3):363–370. doi: 10.1111/j.1365-2958.1992.tb01479.x. [DOI] [PubMed] [Google Scholar]
  5. Chomiki N., Voss J. C., Warden C. H. Structure-function relationships in UCP1, UCP2 and chimeras: EPR analysis and retinoic acid activation of UCP2. Eur J Biochem. 2001 Feb;268(4):903–913. doi: 10.1046/j.1432-1327.2001.01946.x. [DOI] [PubMed] [Google Scholar]
  6. Echtay K. S., Brand M. D. Coenzyme Q induces GDP-sensitive proton conductance in kidney mitochondria. Biochem Soc Trans. 2001 Nov;29(Pt 6):763–768. doi: 10.1042/0300-5127:0290763. [DOI] [PubMed] [Google Scholar]
  7. Echtay K. S., Winkler E., Frischmuth K., Klingenberg M. Uncoupling proteins 2 and 3 are highly active H(+) transporters and highly nucleotide sensitive when activated by coenzyme Q (ubiquinone). Proc Natl Acad Sci U S A. 2001 Feb 13;98(4):1416–1421. doi: 10.1073/pnas.98.4.1416. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Echtay K. S., Winkler E., Klingenberg M. Coenzyme Q is an obligatory cofactor for uncoupling protein function. Nature. 2000 Nov 30;408(6812):609–613. doi: 10.1038/35046114. [DOI] [PubMed] [Google Scholar]
  9. Echtay Karim S., Esteves Telma C., Pakay Julian L., Jekabsons Mika B., Lambert Adrian J., Portero-Otín Manuel, Pamplona Reinald, Vidal-Puig Antonio J., Wang Steven, Roebuck Stephen J. A signalling role for 4-hydroxy-2-nonenal in regulation of mitochondrial uncoupling. EMBO J. 2003 Aug 15;22(16):4103–4110. doi: 10.1093/emboj/cdg412. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Echtay Karim S., Roussel Damien, St-Pierre Julie, Jekabsons Mika B., Cadenas Susana, Stuart Jeff A., Harper James A., Roebuck Stephen J., Morrison Alastair, Pickering Susan. Superoxide activates mitochondrial uncoupling proteins. Nature. 2002 Jan 3;415(6867):96–99. doi: 10.1038/415096a. [DOI] [PubMed] [Google Scholar]
  11. Hsu A. Y., Do T. Q., Lee P. T., Clarke C. F. Genetic evidence for a multi-subunit complex in the O-methyltransferase steps of coenzyme Q biosynthesis. Biochim Biophys Acta. 2000 Apr 12;1484(2-3):287–297. doi: 10.1016/s1388-1981(00)00019-6. [DOI] [PubMed] [Google Scholar]
  12. Jaburek Martin, Garlid Keith D. Reconstitution of recombinant uncoupling proteins: UCP1, -2, and -3 have similar affinities for ATP and are unaffected by coenzyme Q10. J Biol Chem. 2003 May 6;278(28):25825–25831. doi: 10.1074/jbc.M302126200. [DOI] [PubMed] [Google Scholar]
  13. Jabůrek M., Varecha M., Gimeno R. E., Dembski M., Jezek P., Zhang M., Burn P., Tartaglia L. A., Garlid K. D. Transport function and regulation of mitochondrial uncoupling proteins 2 and 3. J Biol Chem. 1999 Sep 10;274(37):26003–26007. doi: 10.1074/jbc.274.37.26003. [DOI] [PubMed] [Google Scholar]
  14. Jekabsons Mika B., Echtay Karim S., Brand Martin D. Nucleotide binding to human uncoupling protein-2 refolded from bacterial inclusion bodies. Biochem J. 2002 Sep 1;366(Pt 2):565–571. doi: 10.1042/BJ20020469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Jonassen Tanya, Marbois Beth N., Faull Kym F., Clarke Catherine F., Larsen Pamela L. Development and fertility in Caenorhabditis elegans clk-1 mutants depend upon transport of dietary coenzyme Q8 to mitochondria. J Biol Chem. 2002 Sep 24;277(47):45020–45027. doi: 10.1074/jbc.M204758200. [DOI] [PubMed] [Google Scholar]
  16. Klingenberg M., Echtay K. S. Uncoupling proteins: the issues from a biochemist point of view. Biochim Biophys Acta. 2001 Mar 1;1504(1):128–143. doi: 10.1016/s0005-2728(00)00242-5. [DOI] [PubMed] [Google Scholar]
  17. Klingenberg M. Uncoupling proteins--how do they work and how are they regulated. IUBMB Life. 2001 Sep-Nov;52(3-5):175–179. doi: 10.1080/15216540152845975. [DOI] [PubMed] [Google Scholar]
  18. Lin C. S., Klingenberg M. Isolation of the uncoupling protein from brown adipose tissue mitochondria. FEBS Lett. 1980 May 5;113(2):299–303. doi: 10.1016/0014-5793(80)80613-2. [DOI] [PubMed] [Google Scholar]
  19. Murphy Michael P., Echtay Karim S., Blaikie Frances H., Asin-Cayuela Jordi, Cocheme Helena M., Green Katherine, Buckingham Julie A., Taylor Ellen R., Hurrell Fiona, Hughes Gillian. Superoxide activates uncoupling proteins by generating carbon-centered radicals and initiating lipid peroxidation: studies using a mitochondria-targeted spin trap derived from alpha-phenyl-N-tert-butylnitrone. J Biol Chem. 2003 Sep 12;278(49):48534–48545. doi: 10.1074/jbc.M308529200. [DOI] [PubMed] [Google Scholar]
  20. Nicholls D. G., Rial E. A history of the first uncoupling protein, UCP1. J Bioenerg Biomembr. 1999 Oct;31(5):399–406. doi: 10.1023/a:1005436121005. [DOI] [PubMed] [Google Scholar]
  21. Poon W. W., Barkovich R. J., Hsu A. Y., Frankel A., Lee P. T., Shepherd J. N., Myles D. C., Clarke C. F. Yeast and rat Coq3 and Escherichia coli UbiG polypeptides catalyze both O-methyltransferase steps in coenzyme Q biosynthesis. J Biol Chem. 1999 Jul 30;274(31):21665–21672. doi: 10.1074/jbc.274.31.21665. [DOI] [PubMed] [Google Scholar]
  22. Poon W. W., Do T. Q., Marbois B. N., Clarke C. F. Sensitivity to treatment with polyunsaturated fatty acids is a general characteristic of the ubiquinone-deficient yeast coq mutants. Mol Aspects Med. 1997;18 (Suppl):S121–S127. doi: 10.1016/s0098-2997(97)00004-6. [DOI] [PubMed] [Google Scholar]
  23. Poon W. W., Marbois B. N., Faull K. F., Clarke C. F. 3-Hexaprenyl-4-hydroxybenzoic acid forms a predominant intermediate pool in ubiquinone biosynthesis in Saccharomyces cerevisiae. Arch Biochem Biophys. 1995 Jul 10;320(2):305–314. doi: 10.1016/0003-9861(95)90014-4. [DOI] [PubMed] [Google Scholar]
  24. Proft M., Kötter P., Hedges D., Bojunga N., Entian K. D. CAT5, a new gene necessary for derepression of gluconeogenic enzymes in Saccharomyces cerevisiae. EMBO J. 1995 Dec 15;14(24):6116–6126. doi: 10.1002/j.1460-2075.1995.tb00302.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Reynafarje B., Costa L. E., Lehninger A. L. O2 solubility in aqueous media determined by a kinetic method. Anal Biochem. 1985 Mar;145(2):406–418. doi: 10.1016/0003-2697(85)90381-1. [DOI] [PubMed] [Google Scholar]
  26. Rial E., González-Barroso M., Fleury C., Iturrizaga S., Sanchis D., Jiménez-Jiménez J., Ricquier D., Goubern M., Bouillaud F. Retinoids activate proton transport by the uncoupling proteins UCP1 and UCP2. EMBO J. 1999 Nov 1;18(21):5827–5833. doi: 10.1093/emboj/18.21.5827. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Santos-Ocaña Carlos, Do Thai Q., Padilla Sergio, Navas Placido, Clarke Catherine F. Uptake of exogenous coenzyme Q and transport to mitochondria is required for bc1 complex stability in yeast coq mutants. J Biol Chem. 2002 Jan 11;277(13):10973–10981. doi: 10.1074/jbc.M112222200. [DOI] [PubMed] [Google Scholar]
  28. Stuart J. A., Harper J. A., Brindle K. M., Jekabsons M. B., Brand M. D. A mitochondrial uncoupling artifact can be caused by expression of uncoupling protein 1 in yeast. Biochem J. 2001 Jun 15;356(Pt 3):779–789. doi: 10.1042/0264-6021:3560779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Tomás Paula, Ledesma Amalia, Rial Eduardo. Photoaffinity labeling of the uncoupling protein UCP1 with retinoic acid: ubiquinone favors binding. FEBS Lett. 2002 Aug 28;526(1-3):63–65. doi: 10.1016/s0014-5793(02)03116-2. [DOI] [PubMed] [Google Scholar]
  30. Tzagoloff A., Dieckmann C. L. PET genes of Saccharomyces cerevisiae. Microbiol Rev. 1990 Sep;54(3):211–225. doi: 10.1128/mr.54.3.211-225.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES