Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 Apr 15;379(Pt 2):497–503. doi: 10.1042/BJ20031596

Augmented intrinsic activity of Factor VIIa by replacement of residues 305, 314, 337 and 374: evidence of two unique mutational mechanisms of activity enhancement.

Egon Persson 1, Helle Bak 1, Anette Østergaard 1, Ole H Olsen 1
PMCID: PMC1224069  PMID: 14686879

Abstract

Coagulation Factor VIIa (FVIIa) lacks the ability to spontaneously complete the conversion to a fully active enzyme after specific cleavage of an internal peptide bond (Arg152-Ile153) in the zymogen. Recently, several variants of FVIIa with enhanced intrinsic activity have been constructed. The in vitro characterization of these variants has shed light on molecular determinants that put restrictions on FVIIa in favour of a zymogen-like conformation and warrants continued efforts. Here we describe a new FVIIa variant with high intrinsic activity containing the mutations Leu305-->Val, Ser314-->Glu, Lys337-->Ala, and Phe374-->Tyr. The variant, called FVIIa(VEAY), processes a tripeptidyl substrate very efficiently because of an unprecedented, 5.5-fold lowering of the K(m) value. Together with a 4-fold higher substrate turnover rate this gives the variant a catalytic efficiency 22 times that of wild-type FVIIa, which is reflected in a considerably enhanced susceptibility to inhibition by antithrombin and other inhibitors. For instance, the affinity of FVIIa(VEAY) for the S1 probe and inhibitor p -aminobenzamidine is represented by an 8-fold lower K(i) value compared with that of FVIIa. Activation of Factor X in solution occurs about 10 times faster with FVIIa(VEAY) than with FVIIa, due virtually exclusively to an increased kcat value. The high activity of FVIIa(VEAY) is not accompanied by an increased burial of the N-terminus of the protease domain. A comparison of the kinetic parameters and molecular properties of FVIIa(VEAY) with those of the previously described mutant V158D/E296V/M298Q-FVIIa (FVIIa(IIa)), and the locations of the substitutions in the two variants, reveals what appear to be two profoundly different structural mechanisms dictating improvements in enzymic performance.

Full Text

The Full Text of this article is available as a PDF (160.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Banner D. W., D'Arcy A., Chène C., Winkler F. K., Guha A., Konigsberg W. H., Nemerson Y., Kirchhofer D. The crystal structure of the complex of blood coagulation factor VIIa with soluble tissue factor. Nature. 1996 Mar 7;380(6569):41–46. doi: 10.1038/380041a0. [DOI] [PubMed] [Google Scholar]
  2. Davie E. W., Fujikawa K., Kisiel W. The coagulation cascade: initiation, maintenance, and regulation. Biochemistry. 1991 Oct 29;30(43):10363–10370. doi: 10.1021/bi00107a001. [DOI] [PubMed] [Google Scholar]
  3. Dennis M. S., Eigenbrot C., Skelton N. J., Ultsch M. H., Santell L., Dwyer M. A., O'Connell M. P., Lazarus R. A. Peptide exosite inhibitors of factor VIIa as anticoagulants. Nature. 2000 Mar 30;404(6777):465–470. doi: 10.1038/35006574. [DOI] [PubMed] [Google Scholar]
  4. Dickinson C. D., Kelly C. R., Ruf W. Identification of surface residues mediating tissue factor binding and catalytic function of the serine protease factor VIIa. Proc Natl Acad Sci U S A. 1996 Dec 10;93(25):14379–14384. doi: 10.1073/pnas.93.25.14379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Eigenbrot C., Kirchhofer D., Dennis M. S., Santell L., Lazarus R. A., Stamos J., Ultsch M. H. The factor VII zymogen structure reveals reregistration of beta strands during activation. Structure. 2001 Jul 3;9(7):627–636. doi: 10.1016/s0969-2126(01)00624-4. [DOI] [PubMed] [Google Scholar]
  6. Freskgård P. O., Olsen O. H., Persson E. Structural changes in factor VIIa induced by Ca2+ and tissue factor studied using circular dichroism spectroscopy. Protein Sci. 1996 Aug;5(8):1531–1540. doi: 10.1002/pro.5560050809. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Higashi S., Nishimura H., Aita K., Iwanaga S. Identification of regions of bovine factor VII essential for binding to tissue factor. J Biol Chem. 1994 Jul 22;269(29):18891–18898. [PubMed] [Google Scholar]
  8. Kemball-Cook G., Johnson D. J., Tuddenham E. G., Harlos K. Crystal structure of active site-inhibited human coagulation factor VIIa (des-Gla). J Struct Biol. 1999 Oct;127(3):213–223. doi: 10.1006/jsbi.1999.4158. [DOI] [PubMed] [Google Scholar]
  9. Monroe Dougald M., Hoffman Maureane, Roberts Harold R. Platelets and thrombin generation. Arterioscler Thromb Vasc Biol. 2002 Sep 1;22(9):1381–1389. doi: 10.1161/01.atv.0000031340.68494.34. [DOI] [PubMed] [Google Scholar]
  10. Nakagaki T., Foster D. C., Berkner K. L., Kisiel W. Initiation of the extrinsic pathway of blood coagulation: evidence for the tissue factor dependent autoactivation of human coagulation factor VII. Biochemistry. 1991 Nov 12;30(45):10819–10824. doi: 10.1021/bi00109a001. [DOI] [PubMed] [Google Scholar]
  11. Neuenschwander P. F., Fiore M. M., Morrissey J. H. Factor VII autoactivation proceeds via interaction of distinct protease-cofactor and zymogen-cofactor complexes. Implications of a two-dimensional enzyme kinetic mechanism. J Biol Chem. 1993 Oct 15;268(29):21489–21492. [PubMed] [Google Scholar]
  12. Persson E., Bak H., Olsen O. H. Substitution of valine for leucine 305 in factor VIIa increases the intrinsic enzymatic activity. J Biol Chem. 2001 Jun 1;276(31):29195–29199. doi: 10.1074/jbc.M102187200. [DOI] [PubMed] [Google Scholar]
  13. Persson E. Influence of the gamma-carboxyglutamic acid-rich domain and hydrophobic stack of factor VIIa on tissue factor binding. Haemostasis. 1996;26 (Suppl 1):31–34. doi: 10.1159/000217237. [DOI] [PubMed] [Google Scholar]
  14. Persson E., Kjalke M., Olsen O. H. Rational design of coagulation factor VIIa variants with substantially increased intrinsic activity. Proc Natl Acad Sci U S A. 2001 Nov 6;98(24):13583–13588. doi: 10.1073/pnas.241339498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Persson E., Nielsen L. S., Olsen O. H. Substitution of aspartic acid for methionine-306 in factor VIIa abolishes the allosteric linkage between the active site and the binding interface with tissue factor. Biochemistry. 2001 Mar 20;40(11):3251–3256. doi: 10.1021/bi001612z. [DOI] [PubMed] [Google Scholar]
  16. Persson E., Nielsen L. S. Site-directed mutagenesis but not gamma-carboxylation of Glu-35 in factor VIIa affects the association with tissue factor. FEBS Lett. 1996 May 6;385(3):241–243. doi: 10.1016/0014-5793(96)00400-0. [DOI] [PubMed] [Google Scholar]
  17. Persson Egon, Olsen Ole H. Assignment of molecular properties of a superactive coagulation factor VIIa variant to individual amino acid changes. Eur J Biochem. 2002 Dec;269(23):5950–5955. doi: 10.1046/j.1432-1033.2002.03323.x. [DOI] [PubMed] [Google Scholar]
  18. Petersen L. C., Olsen O. H., Nielsen L. S., Freskgård P. O., Persson E. Binding of Zn2+ to a Ca2+ loop allosterically attenuates the activity of factor VIIa and reduces its affinity for tissue factor. Protein Sci. 2000 May;9(5):859–866. doi: 10.1110/ps.9.5.859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Petrovan R. J., Ruf W. Residue Met(156) contributes to the labile enzyme conformation of coagulation factor VIIa. J Biol Chem. 2000 Nov 14;276(9):6616–6620. doi: 10.1074/jbc.M004726200. [DOI] [PubMed] [Google Scholar]
  20. Petrovan R. J., Ruf W. Role of residue Phe225 in the cofactor-mediated, allosteric regulation of the serine protease coagulation factor VIIa. Biochemistry. 2000 Nov 28;39(47):14457–14463. doi: 10.1021/bi0009486. [DOI] [PubMed] [Google Scholar]
  21. Petrovan Ramona J., Ruf Wolfram. Role of zymogenicity-determining residues of coagulation factor VII/VIIa in cofactor interaction and macromolecular substrate recognition. Biochemistry. 2002 Jul 30;41(30):9302–9309. doi: 10.1021/bi0202169. [DOI] [PubMed] [Google Scholar]
  22. Pike A. C., Brzozowski A. M., Roberts S. M., Olsen O. H., Persson E. Structure of human factor VIIa and its implications for the triggering of blood coagulation. Proc Natl Acad Sci U S A. 1999 Aug 3;96(16):8925–8930. doi: 10.1073/pnas.96.16.8925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Rao L. V., Rapaport S. I. Activation of factor VII bound to tissue factor: a key early step in the tissue factor pathway of blood coagulation. Proc Natl Acad Sci U S A. 1988 Sep;85(18):6687–6691. doi: 10.1073/pnas.85.18.6687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Rao L. V., Rapaport S. I., Bajaj S. P. Activation of human factor VII in the initiation of tissue factor-dependent coagulation. Blood. 1986 Sep;68(3):685–691. [PubMed] [Google Scholar]
  25. Ruf W., Dickinson C. D. Allosteric regulation of the cofactor-dependent serine protease coagulation factor VIIa. Trends Cardiovasc Med. 1998 Nov;8(8):350–356. doi: 10.1016/s1050-1738(98)00031-0. [DOI] [PubMed] [Google Scholar]
  26. Sichler Katrin, Banner David W., D'Arcy Allan, Hopfner Karl-Peter, Huber Robert, Bode Wolfram, Kresse Georg-Burkhard, Kopetzki Erhard, Brandstetter Hans. Crystal structures of uninhibited factor VIIa link its cofactor and substrate-assisted activation to specific interactions. J Mol Biol. 2002 Sep 20;322(3):591–603. doi: 10.1016/s0022-2836(02)00747-7. [DOI] [PubMed] [Google Scholar]
  27. Soejima K., Mizuguchi J., Yuguchi M., Nakagaki T., Higashi S., Iwanaga S. Factor VIIa modified in the 170 loop shows enhanced catalytic activity but does not change the zymogen-like property. J Biol Chem. 2001 Feb 2;276(20):17229–17235. doi: 10.1074/jbc.M009206200. [DOI] [PubMed] [Google Scholar]
  28. Soejima Kenji, Yuguchi Masato, Mizuguchi Jun, Tomokiyo Kazuhiko, Nakashima Toshihiro, Nakagaki Tomohiro, Iwanaga Sadaaki. The 99 and 170 loop-modified factor VIIa mutants show enhanced catalytic activity without tissue factor. J Biol Chem. 2002 Oct 2;277(50):49027–49035. doi: 10.1074/jbc.M203091200. [DOI] [PubMed] [Google Scholar]
  29. Sorensen B. B., Persson E., Freskgârd P. O., Kjalke M., Ezban M., Williams T., Rao L. V. Incorporation of an active site inhibitor in factor VIIa alters the affinity for tissue factor. J Biol Chem. 1997 May 2;272(18):11863–11868. doi: 10.1074/jbc.272.18.11863. [DOI] [PubMed] [Google Scholar]
  30. Thim L., Bjoern S., Christensen M., Nicolaisen E. M., Lund-Hansen T., Pedersen A. H., Hedner U. Amino acid sequence and posttranslational modifications of human factor VIIa from plasma and transfected baby hamster kidney cells. Biochemistry. 1988 Oct 4;27(20):7785–7793. doi: 10.1021/bi00420a030. [DOI] [PubMed] [Google Scholar]
  31. Toso Raffaella, Bernardi Francesco, Tidd Theresa, Pinotti Mirko, Camire Rodney M., Marchetti Giovanna, High Katherine A., Pollak Eleanor S. Factor VII mutant V154G models a zymogen-like form of factor VIIa. Biochem J. 2003 Feb 1;369(Pt 3):563–571. doi: 10.1042/BJ20020888. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Yamamoto M., Nakagaki T., Kisiel W. Tissue factor-dependent autoactivation of human blood coagulation factor VII. J Biol Chem. 1992 Sep 25;267(27):19089–19094. [PubMed] [Google Scholar]
  33. Zhang E., St Charles R., Tulinsky A. Structure of extracellular tissue factor complexed with factor VIIa inhibited with a BPTI mutant. J Mol Biol. 1999 Feb 5;285(5):2089–2104. doi: 10.1006/jmbi.1998.2452. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES