Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 Apr 15;379(Pt 2):351–358. doi: 10.1042/BJ20031371

Expression of pro-inflammatory markers by human dermal fibroblasts in a three-dimensional culture model is mediated by an autocrine interleukin-1 loop.

Daniela Kessler-Becker 1, Thomas Krieg 1, Beate Eckes 1
PMCID: PMC1224070  PMID: 14686880

Abstract

In vivo, fibroblasts reside in connective tissues, with which they communicate in a reciprocal way. Such cell--extracellular matrix interactions can be studied in vitro by seeding fibroblasts in collagen lattices. Depending upon the mechanical properties of the system, fibroblasts are activated to assume defined phenotypes. In the present study, we examined a transcriptional profile of primary human dermal fibroblasts cultured in a relaxed collagen environment and found relative induction (>2-fold) of 393 out of approx. 7100 transcripts when compared with the same system under mechanical tension. Despite down-regulated proliferation and matrix synthesis, cells did not become generally quiescent, since they induced transcription of numerous other genes including matrix metalloproteinases (MMPs) and growth factors/cytokines. Of particular interest was the induction of gene transcripts encoding pro-inflammatory mediators, e.g. cyclo-oxygenase-2 (COX-2), and interleukins (ILs)-1 and -6. These are apparently regulated in a hierarchical fashion, since the addition of IL-1 receptor antagonist prevented induction of COX-2, IL-1 and IL-6, but not that of MMP-1 or keratinocyte growth factor (KGF). Our results suggest strongly that skin fibroblasts are versatile cells, which adapt to their extracellular environment by displaying specific phenotypes. One such phenotype, induced by a mechanically relaxed collagen environment, is the 'pro-inflammatory' fibroblast. We propose that fibroblasts that are embedded in a matrix environment can actively participate in the regulation of inflammatory processes.

Full Text

The Full Text of this article is available as a PDF (180.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Auron P. E., Webb A. C., Rosenwasser L. J., Mucci S. F., Rich A., Wolff S. M., Dinarello C. A. Nucleotide sequence of human monocyte interleukin 1 precursor cDNA. Proc Natl Acad Sci U S A. 1984 Dec;81(24):7907–7911. doi: 10.1073/pnas.81.24.7907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bell E., Ivarsson B., Merrill C. Production of a tissue-like structure by contraction of collagen lattices by human fibroblasts of different proliferative potential in vitro. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1274–1278. doi: 10.1073/pnas.76.3.1274. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Braun Susanne, Hanselmann Christine, Gassmann Marcus G., auf dem Keller Ulrich, Born-Berclaz Christiane, Chan Kaimin, Kan Yuet Wai, Werner Sabine. Nrf2 transcription factor, a novel target of keratinocyte growth factor action which regulates gene expression and inflammation in the healing skin wound. Mol Cell Biol. 2002 Aug;22(15):5492–5505. doi: 10.1128/MCB.22.15.5492-5505.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Carlson S. G., Fawcett T. W., Bartlett J. D., Bernier M., Holbrook N. J. Regulation of the C/EBP-related gene gadd153 by glucose deprivation. Mol Cell Biol. 1993 Aug;13(8):4736–4744. doi: 10.1128/mcb.13.8.4736. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chang A. C., Janosi J., Hulsbeek M., de Jong D., Jeffrey K. J., Noble J. R., Reddel R. R. A novel human cDNA highly homologous to the fish hormone stanniocalcin. Mol Cell Endocrinol. 1995 Aug 11;112(2):241–247. doi: 10.1016/0303-7207(95)03601-3. [DOI] [PubMed] [Google Scholar]
  6. Chen C. S., Mrksich M., Huang S., Whitesides G. M., Ingber D. E. Geometric control of cell life and death. Science. 1997 May 30;276(5317):1425–1428. doi: 10.1126/science.276.5317.1425. [DOI] [PubMed] [Google Scholar]
  7. Chen W. T. Proteases associated with invadopodia, and their role in degradation of extracellular matrix. Enzyme Protein. 1996;49(1-3):59–71. doi: 10.1159/000468616. [DOI] [PubMed] [Google Scholar]
  8. Chiquet-Ehrismann R., Tannheimer M., Koch M., Brunner A., Spring J., Martin D., Baumgartner S., Chiquet M. Tenascin-C expression by fibroblasts is elevated in stressed collagen gels. J Cell Biol. 1994 Dec;127(6 Pt 2):2093–2101. doi: 10.1083/jcb.127.6.2093. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chiquet M. Regulation of extracellular matrix gene expression by mechanical stress. Matrix Biol. 1999 Oct;18(5):417–426. doi: 10.1016/s0945-053x(99)00039-6. [DOI] [PubMed] [Google Scholar]
  10. Cukierman E., Pankov R., Stevens D. R., Yamada K. M. Taking cell-matrix adhesions to the third dimension. Science. 2001 Nov 23;294(5547):1708–1712. doi: 10.1126/science.1064829. [DOI] [PubMed] [Google Scholar]
  11. Diaz A., Chepenik K. P., Korn J. H., Reginato A. M., Jimenez S. A. Differential regulation of cyclooxygenases 1 and 2 by interleukin-1 beta, tumor necrosis factor-alpha, and transforming growth factor-beta 1 in human lung fibroblasts. Exp Cell Res. 1998 May 25;241(1):222–229. doi: 10.1006/excr.1998.4050. [DOI] [PubMed] [Google Scholar]
  12. Eckes B., Hunzelmann N., Ziegler-Heitbrock H. W., Urbanski A., Luger T., Krieg T., Mauch C. Interleukin-6 expression by fibroblasts grown in three-dimensional gel cultures. FEBS Lett. 1992 Feb 24;298(2-3):229–232. doi: 10.1016/0014-5793(92)80064-n. [DOI] [PubMed] [Google Scholar]
  13. Eckes B., Kessler D., Aumailley M., Krieg T. Interactions of fibroblasts with the extracellular matrix: implications for the understanding of fibrosis. Springer Semin Immunopathol. 1999;21(4):415–429. doi: 10.1007/s002810000034. [DOI] [PubMed] [Google Scholar]
  14. Eckes B., Mauch C., Hüppe G., Krieg T. Downregulation of collagen synthesis in fibroblasts within three-dimensional collagen lattices involves transcriptional and posttranscriptional mechanisms. FEBS Lett. 1993 Mar 1;318(2):129–133. doi: 10.1016/0014-5793(93)80006-g. [DOI] [PubMed] [Google Scholar]
  15. Finch P. W., Rubin J. S., Miki T., Ron D., Aaronson S. A. Human KGF is FGF-related with properties of a paracrine effector of epithelial cell growth. Science. 1989 Aug 18;245(4919):752–755. doi: 10.1126/science.2475908. [DOI] [PubMed] [Google Scholar]
  16. Fluck J., Querfeld C., Cremer A., Niland S., Krieg T., Sollberg S. Normal human primary fibroblasts undergo apoptosis in three-dimensional contractile collagen gels. J Invest Dermatol. 1998 Feb;110(2):153–157. doi: 10.1046/j.1523-1747.1998.00095.x. [DOI] [PubMed] [Google Scholar]
  17. Fringer Jeanne, Grinnell Frederick. Fibroblast quiescence in floating collagen matrices: decrease in serum activation of MEK and Raf but not Ras. J Biol Chem. 2003 Mar 27;278(23):20612–20617. doi: 10.1074/jbc.M212365200. [DOI] [PubMed] [Google Scholar]
  18. Gabbiani G. The myofibroblast: a key cell for wound healing and fibrocontractive diseases. Prog Clin Biol Res. 1981;54:183–194. [PubMed] [Google Scholar]
  19. Giguère V., Tini M., Flock G., Ong E., Evans R. M., Otulakowski G. Isoform-specific amino-terminal domains dictate DNA-binding properties of ROR alpha, a novel family of orphan hormone nuclear receptors. Genes Dev. 1994 Mar 1;8(5):538–553. doi: 10.1101/gad.8.5.538. [DOI] [PubMed] [Google Scholar]
  20. Grinnell F. Fibroblasts, myofibroblasts, and wound contraction. J Cell Biol. 1994 Feb;124(4):401–404. doi: 10.1083/jcb.124.4.401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Grinnell F., Ho C. H., Lin Y. C., Skuta G. Differences in the regulation of fibroblast contraction of floating versus stressed collagen matrices. J Biol Chem. 1999 Jan 8;274(2):918–923. doi: 10.1074/jbc.274.2.918. [DOI] [PubMed] [Google Scholar]
  22. Grinnell F., Zhu M., Carlson M. A., Abrams J. M. Release of mechanical tension triggers apoptosis of human fibroblasts in a model of regressing granulation tissue. Exp Cell Res. 1999 May 1;248(2):608–619. doi: 10.1006/excr.1999.4440. [DOI] [PubMed] [Google Scholar]
  23. Hatamochi A., Aumailley M., Mauch C., Chu M. L., Timpl R., Krieg T. Regulation of collagen VI expression in fibroblasts. Effects of cell density, cell-matrix interactions, and chemical transformation. J Biol Chem. 1989 Feb 25;264(6):3494–3499. [PubMed] [Google Scholar]
  24. Hla T., Neilson K. Human cyclooxygenase-2 cDNA. Proc Natl Acad Sci U S A. 1992 Aug 15;89(16):7384–7388. doi: 10.1073/pnas.89.16.7384. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Hynes R. O. Integrins: versatility, modulation, and signaling in cell adhesion. Cell. 1992 Apr 3;69(1):11–25. doi: 10.1016/0092-8674(92)90115-s. [DOI] [PubMed] [Google Scholar]
  26. Hynes Richard O. Integrins: bidirectional, allosteric signaling machines. Cell. 2002 Sep 20;110(6):673–687. doi: 10.1016/s0092-8674(02)00971-6. [DOI] [PubMed] [Google Scholar]
  27. Ingber D. E. Tensegrity: the architectural basis of cellular mechanotransduction. Annu Rev Physiol. 1997;59:575–599. doi: 10.1146/annurev.physiol.59.1.575. [DOI] [PubMed] [Google Scholar]
  28. Johnson K. W., Smith K. A. Molecular cloning of a novel human cdc2/CDC28-like protein kinase. J Biol Chem. 1991 Feb 25;266(6):3402–3407. [PubMed] [Google Scholar]
  29. Jordana M., Särnstrand B., Sime P. J., Ramis I. Immune-inflammatory functions of fibroblasts. Eur Respir J. 1994 Dec;7(12):2212–2222. doi: 10.1183/09031936.94.07122212. [DOI] [PubMed] [Google Scholar]
  30. Kawata A., Mikuni-Takagaki Y. Mechanotransduction in stretched osteocytes--temporal expression of immediate early and other genes. Biochem Biophys Res Commun. 1998 May 19;246(2):404–408. doi: 10.1006/bbrc.1998.8632. [DOI] [PubMed] [Google Scholar]
  31. Kessler D., Dethlefsen S., Haase I., Plomann M., Hirche F., Krieg T., Eckes B. Fibroblasts in mechanically stressed collagen lattices assume a "synthetic" phenotype. J Biol Chem. 2001 Jul 23;276(39):36575–36585. doi: 10.1074/jbc.M101602200. [DOI] [PubMed] [Google Scholar]
  32. Kheradmand F., Werner E., Tremble P., Symons M., Werb Z. Role of Rac1 and oxygen radicals in collagenase-1 expression induced by cell shape change. Science. 1998 May 8;280(5365):898–902. doi: 10.1126/science.280.5365.898. [DOI] [PubMed] [Google Scholar]
  33. Klein C. E., Dressel D., Steinmayer T., Mauch C., Eckes B., Krieg T., Bankert R. B., Weber L. Integrin alpha 2 beta 1 is upregulated in fibroblasts and highly aggressive melanoma cells in three-dimensional collagen lattices and mediates the reorganization of collagen I fibrils. J Cell Biol. 1991 Dec;115(5):1427–1436. doi: 10.1083/jcb.115.5.1427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Kono T., Tanii T., Furukawa M., Mizuno N., Kitajima J., Ishii M., Hamada T., Yoshizato K. Cell cycle analysis of human dermal fibroblasts cultured on or in hydrated type I collagen lattices. Arch Dermatol Res. 1990;282(4):258–262. doi: 10.1007/BF00371646. [DOI] [PubMed] [Google Scholar]
  35. Lambert C. A., Lapiere C. M., Nusgens B. V. An interleukin-1 loop is induced in human skin fibroblasts upon stress relaxation in a three-dimensional collagen gel but is not involved in the up-regulation of matrix metalloproteinase 1. J Biol Chem. 1998 Sep 4;273(36):23143–23149. doi: 10.1074/jbc.273.36.23143. [DOI] [PubMed] [Google Scholar]
  36. Lambert C. A., Soudant E. P., Nusgens B. V., Lapière C. M. Pretranslational regulation of extracellular matrix macromolecules and collagenase expression in fibroblasts by mechanical forces. Lab Invest. 1992 Apr;66(4):444–451. [PubMed] [Google Scholar]
  37. Langholz O., Röckel D., Mauch C., Kozlowska E., Bank I., Krieg T., Eckes B. Collagen and collagenase gene expression in three-dimensional collagen lattices are differentially regulated by alpha 1 beta 1 and alpha 2 beta 1 integrins. J Cell Biol. 1995 Dec;131(6 Pt 2):1903–1915. doi: 10.1083/jcb.131.6.1903. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Leong S. R., Baxter R. C., Camerato T., Dai J., Wood W. I. Structure and functional expression of the acid-labile subunit of the insulin-like growth factor-binding protein complex. Mol Endocrinol. 1992 Jun;6(6):870–876. doi: 10.1210/mend.6.6.1379671. [DOI] [PubMed] [Google Scholar]
  39. Mathew S., Scanlan M. J., Mohan Raj B. K., Murty V. V., Garin-Chesa P., Old L. J., Rettig W. J., Chaganti R. S. The gene for fibroblast activation protein alpha (FAP), a putative cell surface-bound serine protease expressed in cancer stroma and wound healing, maps to chromosome band 2q23. Genomics. 1995 Jan 1;25(1):335–337. doi: 10.1016/0888-7543(95)80157-h. [DOI] [PubMed] [Google Scholar]
  40. Mauch C., Adelmann-Grill B., Hatamochi A., Krieg T. Collagenase gene expression in fibroblasts is regulated by a three-dimensional contact with collagen. FEBS Lett. 1989 Jul 3;250(2):301–305. doi: 10.1016/0014-5793(89)80743-4. [DOI] [PubMed] [Google Scholar]
  41. Mauch C., Hatamochi A., Scharffetter K., Krieg T. Regulation of collagen synthesis in fibroblasts within a three-dimensional collagen gel. Exp Cell Res. 1988 Oct;178(2):493–503. doi: 10.1016/0014-4827(88)90417-x. [DOI] [PubMed] [Google Scholar]
  42. Mauch C. Regulation of connective tissue turnover by cell-matrix interactions. Arch Dermatol Res. 1998 Jul;290 (Suppl):S30–S36. doi: 10.1007/pl00007451. [DOI] [PubMed] [Google Scholar]
  43. May L. T., Helfgott D. C., Sehgal P. B. Anti-beta-interferon antibodies inhibit the increased expression of HLA-B7 mRNA in tumor necrosis factor-treated human fibroblasts: structural studies of the beta 2 interferon involved. Proc Natl Acad Sci U S A. 1986 Dec;83(23):8957–8961. doi: 10.1073/pnas.83.23.8957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Nakagawa S., Pawelek P., Grinnell F. Long-term culture of fibroblasts in contracted collagen gels: effects on cell growth and biosynthetic activity. J Invest Dermatol. 1989 Dec;93(6):792–798. doi: 10.1111/1523-1747.ep12284425. [DOI] [PubMed] [Google Scholar]
  45. Niland S., Cremer A., Fluck J., Eble J. A., Krieg T., Sollberg S. Contraction-dependent apoptosis of normal dermal fibroblasts. J Invest Dermatol. 2001 May;116(5):686–692. doi: 10.1046/j.1523-1747.2001.01342.x. [DOI] [PubMed] [Google Scholar]
  46. Nusgens B., Merrill C., Lapiere C., Bell E. Collagen biosynthesis by cells in a tissue equivalent matrix in vitro. Coll Relat Res. 1984 Oct;4(5):351–363. doi: 10.1016/s0174-173x(84)80003-5. [DOI] [PubMed] [Google Scholar]
  47. Peng Y., Du K., Ramirez S., Diamond R. H., Taub R. Mitogenic up-regulation of the PRL-1 protein-tyrosine phosphatase gene by Egr-1. Egr-1 activation is an early event in liver regeneration. J Biol Chem. 1999 Feb 19;274(8):4513–4520. doi: 10.1074/jbc.274.8.4513. [DOI] [PubMed] [Google Scholar]
  48. Rajah R., Valentinis B., Cohen P. Insulin-like growth factor (IGF)-binding protein-3 induces apoptosis and mediates the effects of transforming growth factor-beta1 on programmed cell death through a p53- and IGF-independent mechanism. J Biol Chem. 1997 May 2;272(18):12181–12188. doi: 10.1074/jbc.272.18.12181. [DOI] [PubMed] [Google Scholar]
  49. Ravanti L., Heino J., López-Otín C., Kähäri V. M. Induction of collagenase-3 (MMP-13) expression in human skin fibroblasts by three-dimensional collagen is mediated by p38 mitogen-activated protein kinase. J Biol Chem. 1999 Jan 22;274(4):2446–2455. doi: 10.1074/jbc.274.4.2446. [DOI] [PubMed] [Google Scholar]
  50. Riikonen T., Westermarck J., Koivisto L., Broberg A., Kähäri V. M., Heino J. Integrin alpha 2 beta 1 is a positive regulator of collagenase (MMP-1) and collagen alpha 1(I) gene expression. J Biol Chem. 1995 Jun 2;270(22):13548–13552. doi: 10.1074/jbc.270.22.13548. [DOI] [PubMed] [Google Scholar]
  51. Rodier A., Marchal-Victorion S., Rochard P., Casas F., Cassar-Malek I., Rouault J. P., Magaud J. P., Mason D. Y., Wrutniak C., Cabello G. BTG1: a triiodothyronine target involved in the myogenic influence of the hormone. Exp Cell Res. 1999 Jun 15;249(2):337–348. doi: 10.1006/excr.1999.4486. [DOI] [PubMed] [Google Scholar]
  52. Rosenfeldt H., Grinnell F. Fibroblast quiescence and the disruption of ERK signaling in mechanically unloaded collagen matrices. J Biol Chem. 2000 Feb 4;275(5):3088–3092. doi: 10.1074/jbc.275.5.3088. [DOI] [PubMed] [Google Scholar]
  53. Rouault J. P., Rimokh R., Tessa C., Paranhos G., Ffrench M., Duret L., Garoccio M., Germain D., Samarut J., Magaud J. P. BTG1, a member of a new family of antiproliferative genes. EMBO J. 1992 Apr;11(4):1663–1670. doi: 10.1002/j.1460-2075.1992.tb05213.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Ruoslahti E. Stretching is good for a cell. Science. 1997 May 30;276(5317):1345–1346. doi: 10.1126/science.276.5317.1345. [DOI] [PubMed] [Google Scholar]
  55. Sarman G., Shappell S. B., Mason E. O., Jr, Smith C. W., Kaplan S. L. Susceptibility to local and systemic bacterial infections in intercellular adhesion molecule 1-deficient transgenic mice. J Infect Dis. 1995 Oct;172(4):1001–1006. doi: 10.1093/infdis/172.4.1001. [DOI] [PubMed] [Google Scholar]
  56. Scanlan M. J., Raj B. K., Calvo B., Garin-Chesa P., Sanz-Moncasi M. P., Healey J. H., Old L. J., Rettig W. J. Molecular cloning of fibroblast activation protein alpha, a member of the serine protease family selectively expressed in stromal fibroblasts of epithelial cancers. Proc Natl Acad Sci U S A. 1994 Jun 7;91(12):5657–5661. doi: 10.1073/pnas.91.12.5657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Smith T., McCracken J., Shin Y. K., DeWitt D. Arachidonic acid and nonsteroidal anti-inflammatory drugs induce conformational changes in the human prostaglandin endoperoxide H2 synthase-2 (cyclooxygenase-2). J Biol Chem. 2000 Dec 22;275(51):40407–40415. doi: 10.1074/jbc.M005563200. [DOI] [PubMed] [Google Scholar]
  58. Subbaramaiah K., Hart J. C., Norton L., Dannenberg A. J. Microtubule-interfering agents stimulate the transcription of cyclooxygenase-2. Evidence for involvement of ERK1/2 AND p38 mitogen-activated protein kinase pathways. J Biol Chem. 2000 May 19;275(20):14838–14845. doi: 10.1074/jbc.275.20.14838. [DOI] [PubMed] [Google Scholar]
  59. Tomasek J. J., Halliday N. L., Updike D. L., Ahern-Moore J. S., Vu T. K., Liu R. W., Howard E. W. Gelatinase A activation is regulated by the organization of the polymerized actin cytoskeleton. J Biol Chem. 1997 Mar 14;272(11):7482–7487. doi: 10.1074/jbc.272.11.7482. [DOI] [PubMed] [Google Scholar]
  60. Trächslin J., Koch M., Chiquet M. Rapid and reversible regulation of collagen XII expression by changes in tensile stress. Exp Cell Res. 1999 Mar 15;247(2):320–328. doi: 10.1006/excr.1998.4363. [DOI] [PubMed] [Google Scholar]
  61. Valentinis B., Bhala A., DeAngelis T., Baserga R., Cohen P. The human insulin-like growth factor (IGF) binding protein-3 inhibits the growth of fibroblasts with a targeted disruption of the IGF-I receptor gene. Mol Endocrinol. 1995 Mar;9(3):361–367. doi: 10.1210/mend.9.3.7539889. [DOI] [PubMed] [Google Scholar]
  62. Valtavaara M., Papponen H., Pirttilä A. M., Hiltunen K., Helander H., Myllylä R. Cloning and characterization of a novel human lysyl hydroxylase isoform highly expressed in pancreas and muscle. J Biol Chem. 1997 Mar 14;272(11):6831–6834. doi: 10.1074/jbc.272.11.6831. [DOI] [PubMed] [Google Scholar]
  63. Vaughan M. B., Howard E. W., Tomasek J. J. Transforming growth factor-beta1 promotes the morphological and functional differentiation of the myofibroblast. Exp Cell Res. 2000 May 25;257(1):180–189. doi: 10.1006/excr.2000.4869. [DOI] [PubMed] [Google Scholar]
  64. Zigrino P., Drescher C., Mauch C. Collagen-induced proMMP-2 activation by MT1-MMP in human dermal fibroblasts and the possible role of alpha2beta1 integrins. Eur J Cell Biol. 2001 Jan;80(1):68–77. doi: 10.1078/0171-9335-00134. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Complete list of sequences analysed by UniGem V 1.0 (Incyte Genomics).
bj3790351add.pdf (635.3KB, pdf)

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES