Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 Apr 15;379(Pt 2):461–469. doi: 10.1042/BJ20031048

Numerous transcriptional alterations in liver persist after short-term enzyme-replacement therapy in a murine model of mucopolysaccharidosis type VII.

Josh C Woloszynek 1, Marie Roberts 1, Trey Coleman 1, Carole Vogler 1, William Sly 1, Clay F Semenkovich 1, Mark S Sands 1
PMCID: PMC1224072  PMID: 14705966

Abstract

The lysosomal storage disease MPS VII (mucopolysaccharidosis type VII) is caused by a deficiency in beta-glucuronidase activity, and results in the accumulation of partially degraded glycosaminoglycans in many cell types. Although MPS VII is a simple monogenetic disorder, the clinical presentation is complex and incompletely understood. ERT (enzyme replacement therapy) is relatively effective at improving the clinical course of the disease; however, some pathologies persist. In order to clarify the molecular events contributing to the disease phenotype and how ERT might impact upon them, we analysed liver tissue from untreated and treated MPS VII mice at both 2 and 5 months of age using biochemical assays and microarray analysis. Overall, as the disease progresses, more genes have altered expression and, at either age, numerous transcriptional changes in multiple pathways appear to be refractory to therapy. With respect to the primary site of disease, both transcriptional and post-transcriptional mechanisms are involved in the regulation of lysosomal enzymes and other lysosome-associated proteins. Many of the changes observed in both lysosome-associated mRNAs and proteins are normalized by enzyme replacement. In addition, gene expression changes in seemingly unrelated pathways may account for the complex metabolic phenotype of the MPS VII mouse. In particular, beta-glucuronidase deficiency appears to induce physiological malnutrition in MPS VII mice. Malnutrition may account for the pronounced adipose storage deficiency observed in this animal. Studying the molecular response to lysosomal storage, especially those changes recalcitrant to therapy, has revealed additional targets that may improve the efficacy of existing therapies.

Full Text

The Full Text of this article is available as a PDF (201.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Attie A. D., Kastelein J. P., Hayden M. R. Pivotal role of ABCA1 in reverse cholesterol transport influencing HDL levels and susceptibility to atherosclerosis. J Lipid Res. 2001 Nov;42(11):1717–1726. [PubMed] [Google Scholar]
  2. Avila J. L., Convit J. Inhibition of leucocytic lysosomal enzymes by glycosaminoglycans in vitro. Biochem J. 1975 Oct;152(1):57–64. doi: 10.1042/bj1520057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Birkenmeier E. H., Barker J. E., Vogler C. A., Kyle J. W., Sly W. S., Gwynn B., Levy B., Pegors C. Increased life span and correction of metabolic defects in murine mucopolysaccharidosis type VII after syngeneic bone marrow transplantation. Blood. 1991 Dec 1;78(11):3081–3092. [PubMed] [Google Scholar]
  4. Birkenmeier E. H., Davisson M. T., Beamer W. G., Ganschow R. E., Vogler C. A., Gwynn B., Lyford K. A., Maltais L. M., Wawrzyniak C. J. Murine mucopolysaccharidosis type VII. Characterization of a mouse with beta-glucuronidase deficiency. J Clin Invest. 1989 Apr;83(4):1258–1266. doi: 10.1172/JCI114010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brooks Andrew I., Stein Colleen S., Hughes Stephanie M., Heth Jason, McCray Paul M., Jr, Sauter Sybille L., Johnston Julie C., Cory-Slechta Deborah A., Federoff Howard J., Davidson Beverly L. Functional correction of established central nervous system deficits in an animal model of lysosomal storage disease with feline immunodeficiency virus-based vectors. Proc Natl Acad Sci U S A. 2002 Apr 16;99(9):6216–6221. doi: 10.1073/pnas.082011999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Casal M. L., Wolfe J. H. Mucopolysaccharidosis type VII in the developing mouse fetus. Pediatr Res. 2000 Jun;47(6):750–756. doi: 10.1203/00006450-200006000-00011. [DOI] [PubMed] [Google Scholar]
  7. Casal M. L., Wolfe J. H. Variant clinical course of mucopolysaccharidosis type VII in two groups of mice carrying the same mutation. Lab Invest. 1998 Dec;78(12):1575–1581. [PubMed] [Google Scholar]
  8. Coleman Rosalind A., Lewin Tal M., Van Horn Cynthia G., Gonzalez-Baró Maria R. Do long-chain acyl-CoA synthetases regulate fatty acid entry into synthetic versus degradative pathways? J Nutr. 2002 Aug;132(8):2123–2126. doi: 10.1093/jn/132.8.2123. [DOI] [PubMed] [Google Scholar]
  9. Daly T. M., Ohlemiller K. K., Roberts M. S., Vogler C. A., Sands M. S. Prevention of systemic clinical disease in MPS VII mice following AAV-mediated neonatal gene transfer. Gene Ther. 2001 Sep;8(17):1291–1298. doi: 10.1038/sj.gt.3301420. [DOI] [PubMed] [Google Scholar]
  10. Daly T. M., Okuyama T., Vogler C., Haskins M. E., Muzyczka N., Sands M. S. Neonatal intramuscular injection with recombinant adeno-associated virus results in prolonged beta-glucuronidase expression in situ and correction of liver pathology in mucopolysaccharidosis type VII mice. Hum Gene Ther. 1999 Jan 1;10(1):85–94. doi: 10.1089/10430349950019219. [DOI] [PubMed] [Google Scholar]
  11. Field C. M., Kellogg D. Septins: cytoskeletal polymers or signalling GTPases? Trends Cell Biol. 1999 Oct;9(10):387–394. doi: 10.1016/s0962-8924(99)01632-3. [DOI] [PubMed] [Google Scholar]
  12. Fournier N., Atger V., Paul J. L., Sturm M., Duverger N., Rothblat G. H., Moatti N. Human ApoA-IV overexpression in transgenic mice induces cAMP-stimulated cholesterol efflux from J774 macrophages to whole serum. Arterioscler Thromb Vasc Biol. 2000 May;20(5):1283–1292. doi: 10.1161/01.atv.20.5.1283. [DOI] [PubMed] [Google Scholar]
  13. Frisella W. A., O'Connor L. H., Vogler C. A., Roberts M., Walkley S., Levy B., Daly T. M., Sands M. S. Intracranial injection of recombinant adeno-associated virus improves cognitive function in a murine model of mucopolysaccharidosis type VII. Mol Ther. 2001 Mar;3(3):351–358. doi: 10.1006/mthe.2001.0274. [DOI] [PubMed] [Google Scholar]
  14. Gatt S., Bierman E. L. Sphingomyelin suppresses the binding and utilization of low density lipoproteins by skin fibroblasts. J Biol Chem. 1980 Apr 25;255(8):3371–3376. [PubMed] [Google Scholar]
  15. Hart M. C., Korshunova Y. O., Cooper J. A. Vertebrates have conserved capping protein alpha isoforms with specific expression patterns. Cell Motil Cytoskeleton. 1997;38(2):120–132. doi: 10.1002/(SICI)1097-0169(1997)38:2<120::AID-CM2>3.0.CO;2-B. [DOI] [PubMed] [Google Scholar]
  16. He Xingxuan, Chen Fei, McGovern Margaret M., Schuchman Edward H. A fluorescence-based, high-throughput sphingomyelin assay for the analysis of Niemann-Pick disease and other disorders of sphingomyelin metabolism. Anal Biochem. 2002 Jul 1;306(1):115–123. doi: 10.1006/abio.2002.5686. [DOI] [PubMed] [Google Scholar]
  17. Jung H. R., Turner S. M., Neese R. A., Young S. G., Hellerstein M. K. Metabolic adaptations to dietary fat malabsorption in chylomicron-deficient mice. Biochem J. 1999 Oct 15;343(Pt 2):473–478. [PMC free article] [PubMed] [Google Scholar]
  18. Kint J. A., Dacremont G., Carton D., Orye E., Hooft C. Mucopolysaccharidosis: secondarily induced abnormal distribution of lysosomal isoenzymes. Science. 1973 Jul 27;181(4097):352–354. doi: 10.1126/science.181.4097.352. [DOI] [PubMed] [Google Scholar]
  19. Konecki D. S., Foetisch K., Zimmer K. P., Schlotter M., Lichter-Konecki U. An alternatively spliced form of the human lysosome-associated membrane protein-2 gene is expressed in a tissue-specific manner. Biochem Biophys Res Commun. 1995 Oct 13;215(2):757–767. doi: 10.1006/bbrc.1995.2528. [DOI] [PubMed] [Google Scholar]
  20. Monroy M. A., Ross F. P., Teitelbaum S. L., Sands M. S. Abnormal osteoclast morphology and bone remodeling in a murine model of a lysosomal storage disease. Bone. 2002 Feb;30(2):352–359. doi: 10.1016/s8756-3282(01)00679-2. [DOI] [PubMed] [Google Scholar]
  21. Mullins C., Bonifacino J. S. The molecular machinery for lysosome biogenesis. Bioessays. 2001 Apr;23(4):333–343. doi: 10.1002/bies.1048. [DOI] [PubMed] [Google Scholar]
  22. Neufeld E. F. Lysosomal storage diseases. Annu Rev Biochem. 1991;60:257–280. doi: 10.1146/annurev.bi.60.070191.001353. [DOI] [PubMed] [Google Scholar]
  23. Ohlemiller K. K., Vogler C. A., Roberts M., Galvin N., Sands M. S. Retinal function is improved in a murine model of a lysosomal storage disease following bone marrow transplantation. Exp Eye Res. 2000 Nov;71(5):469–481. doi: 10.1006/exer.2000.0897. [DOI] [PubMed] [Google Scholar]
  24. Potratz A., Hüttler S., Bierfreund U., Proia R. L., Suzuki K., Sandhoff K. Quantification of mRNAs encoding proteins of the glycosphingolipid catabolism in mouse models of GM2 gangliosidoses and sphingolipid activator protein precursor (prosaposin) deficiency. Biochim Biophys Acta. 2000 Nov 15;1502(3):391–397. doi: 10.1016/s0925-4439(00)00063-6. [DOI] [PubMed] [Google Scholar]
  25. Press B., Feng Y., Hoflack B., Wandinger-Ness A. Mutant Rab7 causes the accumulation of cathepsin D and cation-independent mannose 6-phosphate receptor in an early endocytic compartment. J Cell Biol. 1998 Mar 9;140(5):1075–1089. doi: 10.1083/jcb.140.5.1075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Reusch Uwe, Bernhard Olaf, Koszinowski Ulrich, Schu Peter. AP-1A and AP-3A lysosomal sorting functions. Traffic. 2002 Oct;3(10):752–761. doi: 10.1034/j.1600-0854.2002.31007.x. [DOI] [PubMed] [Google Scholar]
  27. Riederer M. A., Soldati T., Shapiro A. D., Lin J., Pfeffer S. R. Lysosome biogenesis requires Rab9 function and receptor recycling from endosomes to the trans-Golgi network. J Cell Biol. 1994 May;125(3):573–582. doi: 10.1083/jcb.125.3.573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Sands M. S., Barker J. E., Vogler C., Levy B., Gwynn B., Galvin N., Sly W. S., Birkenmeier E. Treatment of murine mucopolysaccharidosis type VII by syngeneic bone marrow transplantation in neonates. Lab Invest. 1993 Jun;68(6):676–686. [PubMed] [Google Scholar]
  29. Sands M. S., Birkenmeier E. H. A single-base-pair deletion in the beta-glucuronidase gene accounts for the phenotype of murine mucopolysaccharidosis type VII. Proc Natl Acad Sci U S A. 1993 Jul 15;90(14):6567–6571. doi: 10.1073/pnas.90.14.6567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Sands M. S., Erway L. C., Vogler C., Sly W. S., Birkenmeier E. H. Syngeneic bone marrow transplantation reduces the hearing loss associated with murine mucopolysaccharidosis type VII. Blood. 1995 Sep 1;86(5):2033–2040. [PubMed] [Google Scholar]
  31. Sands M. S., Vogler C. A., Ohlemiller K. K., Roberts M. S., Grubb J. H., Levy B., Sly W. S. Biodistribution, kinetics, and efficacy of highly phosphorylated and non-phosphorylated beta-glucuronidase in the murine model of mucopolysaccharidosis VII. J Biol Chem. 2001 Sep 18;276(46):43160–43165. doi: 10.1074/jbc.M107778200. [DOI] [PubMed] [Google Scholar]
  32. Sands M. S., Vogler C., Kyle J. W., Grubb J. H., Levy B., Galvin N., Sly W. S., Birkenmeier E. H. Enzyme replacement therapy for murine mucopolysaccharidosis type VII. J Clin Invest. 1994 Jun;93(6):2324–2331. doi: 10.1172/JCI117237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Sands M. S., Vogler C., Torrey A., Levy B., Gwynn B., Grubb J., Sly W. S., Birkenmeier E. H. Murine mucopolysaccharidosis type VII: long term therapeutic effects of enzyme replacement and enzyme replacement followed by bone marrow transplantation. J Clin Invest. 1997 Apr 1;99(7):1596–1605. doi: 10.1172/JCI119322. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Schneider M. R., Lahm H., Wu M., Hoeflich A., Wolf E. Transgenic mouse models for studying the functions of insulin-like growth factor-binding proteins. FASEB J. 2000 Apr;14(5):629–640. doi: 10.1096/fasebj.14.5.629. [DOI] [PubMed] [Google Scholar]
  35. Sly W. S., Quinton B. A., McAlister W. H., Rimoin D. L. Beta glucuronidase deficiency: report of clinical, radiologic, and biochemical features of a new mucopolysaccharidosis. J Pediatr. 1973 Feb;82(2):249–257. doi: 10.1016/s0022-3476(73)80162-3. [DOI] [PubMed] [Google Scholar]
  36. Tang N., Ostap E. M. Motor domain-dependent localization of myo1b (myr-1). Curr Biol. 2001 Jul 24;11(14):1131–1135. doi: 10.1016/s0960-9822(01)00320-7. [DOI] [PubMed] [Google Scholar]
  37. Tordjman K., Bernal-Mizrachi C., Zemany L., Weng S., Feng C., Zhang F., Leone T. C., Coleman T., Kelly D. P., Semenkovich C. F. PPARalpha deficiency reduces insulin resistance and atherosclerosis in apoE-null mice. J Clin Invest. 2001 Apr;107(8):1025–1034. doi: 10.1172/JCI11497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Vogler C., Barker J., Sands M. S., Levy B., Galvin N., Sly W. S. Murine mucopolysaccharidosis VIL: impact of therapies on the phenotype, clinical course, and pathology in a model of a lysosomal storage disease. Pediatr Dev Pathol. 2001 Sep-Oct;4(5):421–433. doi: 10.1007/s10024001-0079-1. [DOI] [PubMed] [Google Scholar]
  39. Vogler C., Birkenmeier E. H., Sly W. S., Levy B., Pegors C., Kyle J. W., Beamer W. G. A murine model of mucopolysaccharidosis VII. Gross and microscopic findings in beta-glucuronidase-deficient mice. Am J Pathol. 1990 Jan;136(1):207–217. [PMC free article] [PubMed] [Google Scholar]
  40. Vogler C., Sands M. S., Levy B., Galvin N., Birkenmeier E. H., Sly W. S. Enzyme replacement with recombinant beta-glucuronidase in murine mucopolysaccharidosis type VII: impact of therapy during the first six weeks of life on subsequent lysosomal storage, growth, and survival. Pediatr Res. 1996 Jun;39(6):1050–1054. doi: 10.1203/00006450-199606000-00019. [DOI] [PubMed] [Google Scholar]
  41. Vogler C., Sands M., Higgins A., Levy B., Grubb J., Birkenmeier E. H., Sly W. S. Enzyme replacement with recombinant beta-glucuronidase in the newborn mucopolysaccharidosis type VII mouse. Pediatr Res. 1993 Dec;34(6):837–840. doi: 10.1203/00006450-199312000-00028. [DOI] [PubMed] [Google Scholar]
  42. Ward D. M., Pevsner J., Scullion M. A., Vaughn M., Kaplan J. Syntaxin 7 and VAMP-7 are soluble N-ethylmaleimide-sensitive factor attachment protein receptors required for late endosome-lysosome and homotypic lysosome fusion in alveolar macrophages. Mol Biol Cell. 2000 Jul;11(7):2327–2333. doi: 10.1091/mbc.11.7.2327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Wolfe J. H., Deshmane S. L., Fraser N. W. Herpesvirus vector gene transfer and expression of beta-glucuronidase in the central nervous system of MPS VII mice. Nat Genet. 1992 Aug;1(5):379–384. doi: 10.1038/ng0892-379. [DOI] [PubMed] [Google Scholar]
  44. Young S. G., Cham C. M., Pitas R. E., Burri B. J., Connolly A., Flynn L., Pappu A. S., Wong J. S., Hamilton R. L., Farese R. V., Jr A genetic model for absent chylomicron formation: mice producing apolipoprotein B in the liver, but not in the intestine. J Clin Invest. 1995 Dec;96(6):2932–2946. doi: 10.1172/JCI118365. [DOI] [PMC free article] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Supplemental Table 1 Genes with altered expression in MPS VII mice
bj3790461add.pdf (80.6KB, pdf)

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES