Abstract
The PTEN (phosphatase and tensin homologue deleted on chromosome 10) tumour-suppressor protein is a phosphoinositide 3-phosphatase which antagonizes phosphoinositide 3-kinase-dependent signalling by dephosphorylating PtdIns(3,4,5)P3. Most tumour-derived point mutations of PTEN induce a loss of function, which correlates with profoundly reduced catalytic activity. However, here we characterize a point mutation at the N-terminus of PTEN, K13E from a human glioblastoma, which displayed wild-type activity when assayed in vitro. This mutation occurs within a conserved polybasic motif, a putative PtdIns(4,5)P2-binding site that may participate in membrane targeting of PTEN. We found that catalytic activity against lipid substrates and vesicle binding of wild-type PTEN, but not of PTEN K13E, were greatly stimulated by anionic lipids, especially PtdIns(4,5)P2. The K13E mutation also greatly reduces the efficiency with which anionic lipids inhibit PTEN activity against soluble substrates, supporting the hypothesis that non-catalytic membrane binding orientates the active site to favour lipid substrates. Significantly, in contrast to the wild-type enzyme, PTEN K13E failed either to prevent protein kinase B/Akt phosphorylation, or inhibit cell proliferation when expressed in PTEN-null U87MG cells. The cellular functioning of K13E PTEN was recovered by targeting to the plasma membrane through inclusion of a myristoylation site. Our results establish a requirement for the conserved N-terminal motif of PTEN for correct membrane orientation, cellular activity and tumour-suppressor function.
Full Text
The Full Text of this article is available as a PDF (208.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alessi D. R., James S. R., Downes C. P., Holmes A. B., Gaffney P. R., Reese C. B., Cohen P. Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Curr Biol. 1997 Apr 1;7(4):261–269. doi: 10.1016/s0960-9822(06)00122-9. [DOI] [PubMed] [Google Scholar]
- Bonneau D., Longy M. Mutations of the human PTEN gene. Hum Mutat. 2000;16(2):109–122. doi: 10.1002/1098-1004(200008)16:2<109::AID-HUMU3>3.0.CO;2-0. [DOI] [PubMed] [Google Scholar]
- Campbell Robert B., Liu Fenghua, Ross Alonzo H. Allosteric activation of PTEN phosphatase by phosphatidylinositol 4,5-bisphosphate. J Biol Chem. 2003 Jul 11;278(36):33617–33620. doi: 10.1074/jbc.C300296200. [DOI] [PubMed] [Google Scholar]
- Carman G. M., Deems R. A., Dennis E. A. Lipid signaling enzymes and surface dilution kinetics. J Biol Chem. 1995 Aug 11;270(32):18711–18714. doi: 10.1074/jbc.270.32.18711. [DOI] [PubMed] [Google Scholar]
- Das Sudipto, Dixon Jack E., Cho Wonhwa. Membrane-binding and activation mechanism of PTEN. Proc Natl Acad Sci U S A. 2003 Jun 13;100(13):7491–7496. doi: 10.1073/pnas.0932835100. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Duerr E. M., Rollbrocker B., Hayashi Y., Peters N., Meyer-Puttlitz B., Louis D. N., Schramm J., Wiestler O. D., Parsons R., Eng C. PTEN mutations in gliomas and glioneuronal tumors. Oncogene. 1998 Apr 30;16(17):2259–2264. doi: 10.1038/sj.onc.1201756. [DOI] [PubMed] [Google Scholar]
- Furnari F. B., Huang H. J., Cavenee W. K. The phosphoinositol phosphatase activity of PTEN mediates a serum-sensitive G1 growth arrest in glioma cells. Cancer Res. 1998 Nov 15;58(22):5002–5008. [PubMed] [Google Scholar]
- Gelb M. H., Jain M. K., Hanel A. M., Berg O. G. Interfacial enzymology of glycerolipid hydrolases: lessons from secreted phospholipases A2. Annu Rev Biochem. 1995;64:653–688. doi: 10.1146/annurev.bi.64.070195.003253. [DOI] [PubMed] [Google Scholar]
- Georgescu M. M., Kirsch K. H., Akagi T., Shishido T., Hanafusa H. The tumor-suppressor activity of PTEN is regulated by its carboxyl-terminal region. Proc Natl Acad Sci U S A. 1999 Aug 31;96(18):10182–10187. doi: 10.1073/pnas.96.18.10182. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Georgescu M. M., Kirsch K. H., Kaloudis P., Yang H., Pavletich N. P., Hanafusa H. Stabilization and productive positioning roles of the C2 domain of PTEN tumor suppressor. Cancer Res. 2000 Dec 15;60(24):7033–7038. [PubMed] [Google Scholar]
- Grønbaek K., Zeuthen J., Guldberg P., Ralfkiaer E., Hou-Jensen K. Alterations of the MMAC1/PTEN gene in lymphoid malignancies. Blood. 1998 Jun 1;91(11):4388–4390. [PubMed] [Google Scholar]
- Han S. Y., Kato H., Kato S., Suzuki T., Shibata H., Ishii S., Shiiba K., Matsuno S., Kanamaru R., Ishioka C. Functional evaluation of PTEN missense mutations using in vitro phosphoinositide phosphatase assay. Cancer Res. 2000 Jun 15;60(12):3147–3151. [PubMed] [Google Scholar]
- Iijima Miho, Devreotes Peter. Tumor suppressor PTEN mediates sensing of chemoattractant gradients. Cell. 2002 May 31;109(5):599–610. doi: 10.1016/s0092-8674(02)00745-6. [DOI] [PubMed] [Google Scholar]
- Jain M. K., Berg O. G. The kinetics of interfacial catalysis by phospholipase A2 and regulation of interfacial activation: hopping versus scooting. Biochim Biophys Acta. 1989 Apr 3;1002(2):127–156. doi: 10.1016/0005-2760(89)90281-6. [DOI] [PubMed] [Google Scholar]
- Lee J. O., Yang H., Georgescu M. M., Di Cristofano A., Maehama T., Shi Y., Dixon J. E., Pandolfi P., Pavletich N. P. Crystal structure of the PTEN tumor suppressor: implications for its phosphoinositide phosphatase activity and membrane association. Cell. 1999 Oct 29;99(3):323–334. doi: 10.1016/s0092-8674(00)81663-3. [DOI] [PubMed] [Google Scholar]
- Lee Seung-Rock, Yang Kap-Seok, Kwon Jaeyul, Lee Chunghee, Jeong Woojin, Rhee Sue Goo. Reversible inactivation of the tumor suppressor PTEN by H2O2. J Biol Chem. 2002 Mar 26;277(23):20336–20342. doi: 10.1074/jbc.M111899200. [DOI] [PubMed] [Google Scholar]
- Lemmon Mark A. Phosphoinositide recognition domains. Traffic. 2003 Apr;4(4):201–213. doi: 10.1034/j.1600-0854.2004.00071.x. [DOI] [PubMed] [Google Scholar]
- Leslie N. R., Bennett D., Gray A., Pass I., Hoang-Xuan K., Downes C. P. Targeting mutants of PTEN reveal distinct subsets of tumour suppressor functions. Biochem J. 2001 Jul 15;357(Pt 2):427–435. doi: 10.1042/0264-6021:3570427. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leslie N. R., Gray A., Pass I., Orchiston E. A., Downes C. P. Analysis of the cellular functions of PTEN using catalytic domain and C-terminal mutations: differential effects of C-terminal deletion on signalling pathways downstream of phosphoinositide 3-kinase. Biochem J. 2000 Mar 15;346(Pt 3):827–833. [PMC free article] [PubMed] [Google Scholar]
- Leslie Nick R., Bennett Deborah, Lindsay Yvonne E., Stewart Hazel, Gray Alex, Downes C. Peter. Redox regulation of PI 3-kinase signalling via inactivation of PTEN. EMBO J. 2003 Oct 15;22(20):5501–5510. doi: 10.1093/emboj/cdg513. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leslie Nick R., Downes C. Peter. PTEN: The down side of PI 3-kinase signalling. Cell Signal. 2002 Apr;14(4):285–295. doi: 10.1016/s0898-6568(01)00234-0. [DOI] [PubMed] [Google Scholar]
- Maehama T., Taylor G. S., Dixon J. E. PTEN and myotubularin: novel phosphoinositide phosphatases. Annu Rev Biochem. 2001;70:247–279. doi: 10.1146/annurev.biochem.70.1.247. [DOI] [PubMed] [Google Scholar]
- McCabe J. B., Berthiaume L. G. Functional roles for fatty acylated amino-terminal domains in subcellular localization. Mol Biol Cell. 1999 Nov;10(11):3771–3786. doi: 10.1091/mbc.10.11.3771. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McConnachie George, Pass Ian, Walker Steven M., Downes C. Peter. Interfacial kinetic analysis of the tumour suppressor phosphatase, PTEN: evidence for activation by anionic phospholipids. Biochem J. 2003 May 1;371(Pt 3):947–955. doi: 10.1042/BJ20021848. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Myers M. P., Stolarov J. P., Eng C., Li J., Wang S. I., Wigler M. H., Parsons R., Tonks N. K. P-TEN, the tumor suppressor from human chromosome 10q23, is a dual-specificity phosphatase. Proc Natl Acad Sci U S A. 1997 Aug 19;94(17):9052–9057. doi: 10.1073/pnas.94.17.9052. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Patel L., Pass I., Coxon P., Downes C. P., Smith S. A., Macphee C. H. Tumor suppressor and anti-inflammatory actions of PPARgamma agonists are mediated via upregulation of PTEN. Curr Biol. 2001 May 15;11(10):764–768. doi: 10.1016/s0960-9822(01)00225-1. [DOI] [PubMed] [Google Scholar]
- Simpson L., Parsons R. PTEN: life as a tumor suppressor. Exp Cell Res. 2001 Mar 10;264(1):29–41. doi: 10.1006/excr.2000.5130. [DOI] [PubMed] [Google Scholar]
- Vazquez F., Grossman S. R., Takahashi Y., Rokas M. V., Nakamura N., Sellers W. R. Phosphorylation of the PTEN tail acts as an inhibitory switch by preventing its recruitment into a protein complex. J Biol Chem. 2001 Nov 13;276(52):48627–48630. doi: 10.1074/jbc.C100556200. [DOI] [PubMed] [Google Scholar]
- Virolle T., Adamson E. D., Baron V., Birle D., Mercola D., Mustelin T., de Belle I. The Egr-1 transcription factor directly activates PTEN during irradiation-induced signalling. Nat Cell Biol. 2001 Dec;3(12):1124–1128. doi: 10.1038/ncb1201-1124. [DOI] [PubMed] [Google Scholar]
- Walker S. M., Downes C. P., Leslie N. R. TPIP: a novel phosphoinositide 3-phosphatase. Biochem J. 2001 Dec 1;360(Pt 2):277–283. doi: 10.1042/0264-6021:3600277. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Watt Stephen A., Kimber Wendy A., Fleming Ian N., Leslie Nick R., Downes C. Peter, Lucocq John M. Detection of novel intracellular agonist responsive pools of phosphatidylinositol 3,4-bisphosphate using the TAPP1 pleckstrin homology domain in immunoelectron microscopy. Biochem J. 2004 Feb 1;377(Pt 3):653–663. doi: 10.1042/BJ20031397. [DOI] [PMC free article] [PubMed] [Google Scholar]