Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 Apr 15;379(Pt 2):421–431. doi: 10.1042/BJ20031661

Identification of a negative regulatory cis-element in the enhancer core region of the prostate-specific antigen promoter: implications for intersection of androgen receptor and nuclear factor-kappaB signalling in prostate cancer cells.

Bekir Cinar 1, Fan Yeung 1, Hiroyuki Konaka 1, Marty W Mayo 1, Michael R Freeman 1, Haiyen E Zhau 1, Leland W K Chung 1
PMCID: PMC1224078  PMID: 14715080

Abstract

The NF-kappaB (nuclear factor-kappaB) transcription factors mediate activation of a large number of gene promoters containing diverse kappaB-site sequences. Here, PSA (prostate-specific antigen) was used as an AR (androgen receptor)-responsive gene to examine the underlying mechanism by which the NF-kappaB p65 transcription factor down-regulates the transcriptional activity of AR in cells. We observed that activation of NF-kappaB by TNFalpha (tumour necrosis factor alpha) inhibited both basal and androgen-stimulated PSA expression, and that this down-regulation occurred at the promoter level, as confirmed by the super-repressor IkappaBalpha (S32A/S36A), a dominant negative inhibitor of NF-kappaB. Using a linker-scanning mutagenesis approach, we identified a cis -element, designated XBE (X-factor-binding element), in the AREc (androgen response element enhancer core) of the PSA promoter, which negatively regulated several AR-responsive promoters, including that of PSA. When three copies of XBE in tandem were juxtaposed to GRE4 (glucocorticoid response element 4), a 4-6-fold reduction of inducible GRE4 activity was detected in three different cell lines, LNCaP, ARCaP-AR and PC3-AR. Bioinformatics and molecular biochemical studies indicated that XBE is a kappaB-like element that binds specifically to the NF-kappaB p65 subunit; consistent with these observations, only NF-kappaB p65, but not the NF-kappaB p50 subunit, was capable of inhibiting AR-mediated PSA promoter transactivation in LNCaP cells. In addition, our data also showed that AR binds to XBE, as well as to the kappaB consensus site, and that the transfection of AR inhibits the kappaB-responsive promoter in transient co-transfection assays. Collectively, these data indicate that cross-modulation between AR and NF-kappaB p65 transcription factors may occur by a novel mechanism involving binding to a common cis -DNA element.

Full Text

The Full Text of this article is available as a PDF (289.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Auphan N., DiDonato J. A., Rosette C., Helmberg A., Karin M. Immunosuppression by glucocorticoids: inhibition of NF-kappa B activity through induction of I kappa B synthesis. Science. 1995 Oct 13;270(5234):286–290. doi: 10.1126/science.270.5234.286. [DOI] [PubMed] [Google Scholar]
  2. Baeuerle P. A., Baltimore D. Activation of DNA-binding activity in an apparently cytoplasmic precursor of the NF-kappa B transcription factor. Cell. 1988 Apr 22;53(2):211–217. doi: 10.1016/0092-8674(88)90382-0. [DOI] [PubMed] [Google Scholar]
  3. Baeuerle P. A., Henkel T. Function and activation of NF-kappa B in the immune system. Annu Rev Immunol. 1994;12:141–179. doi: 10.1146/annurev.iy.12.040194.001041. [DOI] [PubMed] [Google Scholar]
  4. Beg A. A., Baldwin A. S., Jr The I kappa B proteins: multifunctional regulators of Rel/NF-kappa B transcription factors. Genes Dev. 1993 Nov;7(11):2064–2070. doi: 10.1101/gad.7.11.2064. [DOI] [PubMed] [Google Scholar]
  5. Blank V., Kourilsky P., Israël A. NF-kappa B and related proteins: Rel/dorsal homologies meet ankyrin-like repeats. Trends Biochem Sci. 1992 Apr;17(4):135–140. doi: 10.1016/0968-0004(92)90321-y. [DOI] [PubMed] [Google Scholar]
  6. Brinkmann A. O., Blok L. J., de Ruiter P. E., Doesburg P., Steketee K., Berrevoets C. A., Trapman J. Mechanisms of androgen receptor activation and function. J Steroid Biochem Mol Biol. 1999 Apr-Jun;69(1-6):307–313. doi: 10.1016/s0960-0760(99)00049-7. [DOI] [PubMed] [Google Scholar]
  7. Brown K., Gerstberger S., Carlson L., Franzoso G., Siebenlist U. Control of I kappa B-alpha proteolysis by site-specific, signal-induced phosphorylation. Science. 1995 Mar 10;267(5203):1485–1488. doi: 10.1126/science.7878466. [DOI] [PubMed] [Google Scholar]
  8. Catalona W. J., Smith D. S., Ratliff T. L., Dodds K. M., Coplen D. E., Yuan J. J., Petros J. A., Andriole G. L. Measurement of prostate-specific antigen in serum as a screening test for prostate cancer. N Engl J Med. 1991 Apr 25;324(17):1156–1161. doi: 10.1056/NEJM199104253241702. [DOI] [PubMed] [Google Scholar]
  9. Chen Charlie D., Sawyers Charles L. NF-kappa B activates prostate-specific antigen expression and is upregulated in androgen-independent prostate cancer. Mol Cell Biol. 2002 Apr;22(8):2862–2870. doi: 10.1128/MCB.22.8.2862-2870.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cinar B., Koeneman K. S., Edlund M., Prins G. S., Zhau H. E., Chung L. W. Androgen receptor mediates the reduced tumor growth, enhanced androgen responsiveness, and selected target gene transactivation in a human prostate cancer cell line. Cancer Res. 2001 Oct 1;61(19):7310–7317. [PubMed] [Google Scholar]
  11. Cleutjens K. B., van Eekelen C. C., van der Korput H. A., Brinkmann A. O., Trapman J. Two androgen response regions cooperate in steroid hormone regulated activity of the prostate-specific antigen promoter. J Biol Chem. 1996 Mar 15;271(11):6379–6388. doi: 10.1074/jbc.271.11.6379. [DOI] [PubMed] [Google Scholar]
  12. Cleutjens K. B., van der Korput H. A., van Eekelen C. C., van Rooij H. C., Faber P. W., Trapman J. An androgen response element in a far upstream enhancer region is essential for high, androgen-regulated activity of the prostate-specific antigen promoter. Mol Endocrinol. 1997 Feb;11(2):148–161. doi: 10.1210/mend.11.2.9883. [DOI] [PubMed] [Google Scholar]
  13. De Bosscher K., Vanden Berghe W., Vermeulen L., Plaisance S., Boone E., Haegeman G. Glucocorticoids repress NF-kappaB-driven genes by disturbing the interaction of p65 with the basal transcription machinery, irrespective of coactivator levels in the cell. Proc Natl Acad Sci U S A. 2000 Apr 11;97(8):3919–3924. doi: 10.1073/pnas.97.8.3919. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ghosh S., May M. J., Kopp E. B. NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses. Annu Rev Immunol. 1998;16:225–260. doi: 10.1146/annurev.immunol.16.1.225. [DOI] [PubMed] [Google Scholar]
  15. Gilmore T. D., Koedood M., Piffat K. A., White D. W. Rel/NF-kappaB/IkappaB proteins and cancer. Oncogene. 1996 Oct 3;13(7):1367–1378. [PubMed] [Google Scholar]
  16. Higgins K. A., Perez J. R., Coleman T. A., Dorshkind K., McComas W. A., Sarmiento U. M., Rosen C. A., Narayanan R. Antisense inhibition of the p65 subunit of NF-kappa B blocks tumorigenicity and causes tumor regression. Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):9901–9905. doi: 10.1073/pnas.90.21.9901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hoffmann Alexander, Leung Thomas H., Baltimore David. Genetic analysis of NF-kappaB/Rel transcription factors defines functional specificities. EMBO J. 2003 Oct 15;22(20):5530–5539. doi: 10.1093/emboj/cdg534. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Huang S., Robinson J. B., Deguzman A., Bucana C. D., Fidler I. J. Blockade of nuclear factor-kappaB signaling inhibits angiogenesis and tumorigenicity of human ovarian cancer cells by suppressing expression of vascular endothelial growth factor and interleukin 8. Cancer Res. 2000 Oct 1;60(19):5334–5339. [PubMed] [Google Scholar]
  19. Huang W., Shostak Y., Tarr P., Sawyers C., Carey M. Cooperative assembly of androgen receptor into a nucleoprotein complex that regulates the prostate-specific antigen enhancer. J Biol Chem. 1999 Sep 3;274(36):25756–25768. doi: 10.1074/jbc.274.36.25756. [DOI] [PubMed] [Google Scholar]
  20. Kalkhoven E., Wissink S., van der Saag P. T., van der Burg B. Negative interaction between the RelA(p65) subunit of NF-kappaB and the progesterone receptor. J Biol Chem. 1996 Mar 15;271(11):6217–6224. doi: 10.1074/jbc.271.11.6217. [DOI] [PubMed] [Google Scholar]
  21. Lillie J. W., Green M. R. Gene transcription: activator's target in sight. Nature. 1989 Sep 28;341(6240):279–280. doi: 10.1038/341279a0. [DOI] [PubMed] [Google Scholar]
  22. Lu S., Tsai S. Y., Tsai M. J. Regulation of androgen-dependent prostatic cancer cell growth: androgen regulation of CDK2, CDK4, and CKI p16 genes. Cancer Res. 1997 Oct 15;57(20):4511–4516. [PubMed] [Google Scholar]
  23. McEwan I. J., Gustafsson J. Interaction of the human androgen receptor transactivation function with the general transcription factor TFIIF. Proc Natl Acad Sci U S A. 1997 Aug 5;94(16):8485–8490. doi: 10.1073/pnas.94.16.8485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. McKay L. I., Cidlowski J. A. CBP (CREB binding protein) integrates NF-kappaB (nuclear factor-kappaB) and glucocorticoid receptor physical interactions and antagonism. Mol Endocrinol. 2000 Aug;14(8):1222–1234. doi: 10.1210/mend.14.8.0506. [DOI] [PubMed] [Google Scholar]
  25. McKay L. I., Cidlowski J. A. Cross-talk between nuclear factor-kappa B and the steroid hormone receptors: mechanisms of mutual antagonism. Mol Endocrinol. 1998 Jan;12(1):45–56. doi: 10.1210/mend.12.1.0044. [DOI] [PubMed] [Google Scholar]
  26. McKay L. I., Cidlowski J. A. Molecular control of immune/inflammatory responses: interactions between nuclear factor-kappa B and steroid receptor-signaling pathways. Endocr Rev. 1999 Aug;20(4):435–459. doi: 10.1210/edrv.20.4.0375. [DOI] [PubMed] [Google Scholar]
  27. Mitchell P. J., Tjian R. Transcriptional regulation in mammalian cells by sequence-specific DNA binding proteins. Science. 1989 Jul 28;245(4916):371–378. doi: 10.1126/science.2667136. [DOI] [PubMed] [Google Scholar]
  28. Palvimo J. J., Reinikainen P., Ikonen T., Kallio P. J., Moilanen A., Jänne O. A. Mutual transcriptional interference between RelA and androgen receptor. J Biol Chem. 1996 Sep 27;271(39):24151–24156. doi: 10.1074/jbc.271.39.24151. [DOI] [PubMed] [Google Scholar]
  29. Schmidt-Ullrich R., Mémet S., Lilienbaum A., Feuillard J., Raphaël M., Israel A. NF-kappaB activity in transgenic mice: developmental regulation and tissue specificity. Development. 1996 Jul;122(7):2117–2128. doi: 10.1242/dev.122.7.2117. [DOI] [PubMed] [Google Scholar]
  30. Schmitz M. L., Stelzer G., Altmann H., Meisterernst M., Baeuerle P. A. Interaction of the COOH-terminal transactivation domain of p65 NF-kappa B with TATA-binding protein, transcription factor IIB, and coactivators. J Biol Chem. 1995 Mar 31;270(13):7219–7226. doi: 10.1074/jbc.270.13.7219. [DOI] [PubMed] [Google Scholar]
  31. Schmitz M. L., dos Santos Silva M. A., Altmann H., Czisch M., Holak T. A., Baeuerle P. A. Structural and functional analysis of the NF-kappa B p65 C terminus. An acidic and modular transactivation domain with the potential to adopt an alpha-helical conformation. J Biol Chem. 1994 Oct 14;269(41):25613–25620. [PubMed] [Google Scholar]
  32. Schuur E. R., Henderson G. A., Kmetec L. A., Miller J. D., Lamparski H. G., Henderson D. R. Prostate-specific antigen expression is regulated by an upstream enhancer. J Biol Chem. 1996 Mar 22;271(12):7043–7051. doi: 10.1074/jbc.271.12.7043. [DOI] [PubMed] [Google Scholar]
  33. Sharma H. W., Perez J. R., Higgins-Sochaski K., Hsiao R., Narayanan R. Transcription factor decoy approach to decipher the role of NF-kappa B in oncogenesis. Anticancer Res. 1996 Jan-Feb;16(1):61–69. [PubMed] [Google Scholar]
  34. Sheppard K. A., Phelps K. M., Williams A. J., Thanos D., Glass C. K., Rosenfeld M. G., Gerritsen M. E., Collins T. Nuclear integration of glucocorticoid receptor and nuclear factor-kappaB signaling by CREB-binding protein and steroid receptor coactivator-1. J Biol Chem. 1998 Nov 6;273(45):29291–29294. doi: 10.1074/jbc.273.45.29291. [DOI] [PubMed] [Google Scholar]
  35. Shibata H., Spencer T. E., Oñate S. A., Jenster G., Tsai S. Y., Tsai M. J., O'Malley B. W. Role of co-activators and co-repressors in the mechanism of steroid/thyroid receptor action. Recent Prog Horm Res. 1997;52:141–165. [PubMed] [Google Scholar]
  36. Snoek R., Rennie P. S., Kasper S., Matusik R. J., Bruchovsky N. Induction of cell-free, in vitro transcription by recombinant androgen receptor peptides. J Steroid Biochem Mol Biol. 1996 Nov;59(3-4):243–250. doi: 10.1016/s0960-0760(96)00116-1. [DOI] [PubMed] [Google Scholar]
  37. Trapman J., Cleutjens K. B. Androgen-regulated gene expression in prostate cancer. Semin Cancer Biol. 1997 Feb;8(1):29–36. doi: 10.1006/scbi.1997.0050. [DOI] [PubMed] [Google Scholar]
  38. Tyagi R. K., Lavrovsky Y., Ahn S. C., Song C. S., Chatterjee B., Roy A. K. Dynamics of intracellular movement and nucleocytoplasmic recycling of the ligand-activated androgen receptor in living cells. Mol Endocrinol. 2000 Aug;14(8):1162–1174. doi: 10.1210/mend.14.8.0497. [DOI] [PubMed] [Google Scholar]
  39. Urban M. B., Schreck R., Baeuerle P. A. NF-kappa B contacts DNA by a heterodimer of the p50 and p65 subunit. EMBO J. 1991 Jul;10(7):1817–1825. doi: 10.1002/j.1460-2075.1991.tb07707.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Wang C. Y., Mayo M. W., Baldwin A. S., Jr TNF- and cancer therapy-induced apoptosis: potentiation by inhibition of NF-kappaB. Science. 1996 Nov 1;274(5288):784–787. doi: 10.1126/science.274.5288.784. [DOI] [PubMed] [Google Scholar]
  41. Wong C. I., Zhou Z. X., Sar M., Wilson E. M. Steroid requirement for androgen receptor dimerization and DNA binding. Modulation by intramolecular interactions between the NH2-terminal and steroid-binding domains. J Biol Chem. 1993 Sep 5;268(25):19004–19012. [PubMed] [Google Scholar]
  42. Yamamoto Y., Gaynor R. B. Therapeutic potential of inhibition of the NF-kappaB pathway in the treatment of inflammation and cancer. J Clin Invest. 2001 Jan;107(2):135–142. doi: 10.1172/JCI11914. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Yeung F., Li X., Ellett J., Trapman J., Kao C., Chung L. W. Regions of prostate-specific antigen (PSA) promoter confer androgen-independent expression of PSA in prostate cancer cells. J Biol Chem. 2000 Dec 29;275(52):40846–40855. doi: 10.1074/jbc.M002755200. [DOI] [PubMed] [Google Scholar]
  44. Young C. Y., Andrews P. E., Tindall D. J. Expression and androgenic regulation of human prostate-specific kallikreins. J Androl. 1995 Mar-Apr;16(2):97–99. [PubMed] [Google Scholar]
  45. Zhang J., Zhang S., Murtha P. E., Zhu W., Hou S. S., Young C. Y. Identification of two novel cis-elements in the promoter of the prostate-specific antigen gene that are required to enhance androgen receptor-mediated transactivation. Nucleic Acids Res. 1997 Aug 1;25(15):3143–3150. doi: 10.1093/nar/25.15.3143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Zhau H. E., Goodwin T. J., Chang S. M., Baker T. L., Chung L. W. Establishment of a three-dimensional human prostate organoid coculture under microgravity-simulated conditions: evaluation of androgen-induced growth and PSA expression. In Vitro Cell Dev Biol Anim. 1997 May;33(5):375–380. doi: 10.1007/s11626-997-0008-3. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES