Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 Apr 15;379(Pt 2):331–341. doi: 10.1042/BJ20031082

Heparan sulphate proteoglycans modulate fibroblast growth factor-2 binding through a lipid raft-mediated mechanism.

Chia Lin Chu 1, Jo Ann Buczek-Thomas 1, Matthew A Nugent 1
PMCID: PMC1224079  PMID: 14717658

Abstract

We investigated how lipid raft association of HSPG (heparan sulphate proteoglycans) modulates FGF-2 (fibroblast growth factor-2/basic fibroblast growth factor) interactions with vascular smooth-muscle cells. When lipid rafts were disrupted with sterol-binding agents, methyl-beta-cyclodextrin and filipin, FGF-2 binding to HSPG was reduced 2-5-fold, yet the amount and turnover of cell-surface HSPG were unaffected [corrected]. Approx. 50-65% of bound FGF-2 was in lipid raft-associated fractions based on insolubility in cold Triton X-100 and flotation in OptiPrep density gradients, and this level was increased with higher FGF-2 concentrations [corrected]. Less FGF-2 (50-90%) was associated in raft fractions when cholesterol was depleted or HSPG were degraded with heparinase III. To investigate how lipid raft-HSPG interactions altered binding, we compared the rates of FGF-2 dissociation with native, MbetaCD (methyl-beta-cyclodextrin)- and filipin-treated cells. We found that FGF-2 dissociation rates were increased when lipid rafts were disrupted. These results suggest that localization of HSPG within lipid rafts creates high local concentrations of binding sites such that dissociation of FGF-2 is hindered. The localization of FGF-2 and HSPG to lipid rafts also correlated with the activation of protein kinase Calpha. Thus raft association of HSPG might create growth factor traps resulting in increased binding and signal transduction to enhance cell sensitivity.

Full Text

The Full Text of this article is available as a PDF (564.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bernfield M., Götte M., Park P. W., Reizes O., Fitzgerald M. L., Lincecum J., Zako M. Functions of cell surface heparan sulfate proteoglycans. Annu Rev Biochem. 1999;68:729–777. doi: 10.1146/annurev.biochem.68.1.729. [DOI] [PubMed] [Google Scholar]
  2. Bikfalvi A., Klein S., Pintucci G., Rifkin D. B. Biological roles of fibroblast growth factor-2. Endocr Rev. 1997 Feb;18(1):26–45. doi: 10.1210/edrv.18.1.0292. [DOI] [PubMed] [Google Scholar]
  3. Brown D. A., London E. Structure and function of sphingolipid- and cholesterol-rich membrane rafts. J Biol Chem. 2000 Jun 9;275(23):17221–17224. doi: 10.1074/jbc.R000005200. [DOI] [PubMed] [Google Scholar]
  4. Bryant S. R., Bjercke R. J., Erichsen D. A., Rege A., Lindner V. Vascular remodeling in response to altered blood flow is mediated by fibroblast growth factor-2. Circ Res. 1999 Feb 19;84(3):323–328. doi: 10.1161/01.res.84.3.323. [DOI] [PubMed] [Google Scholar]
  5. Castellot J. J., Jr, Wright T. C., Karnovsky M. J. Regulation of vascular smooth muscle cell growth by heparin and heparan sulfates. Semin Thromb Hemost. 1987 Oct;13(4):489–503. doi: 10.1055/s-2007-1003525. [DOI] [PubMed] [Google Scholar]
  6. David G., Bai X. M., Van der Schueren B., Cassiman J. J., Van den Berghe H. Developmental changes in heparan sulfate expression: in situ detection with mAbs. J Cell Biol. 1992 Nov;119(4):961–975. doi: 10.1083/jcb.119.4.961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. DeLisi C. Role of diffusion regulation in receptor--ligand interactions. Methods Enzymol. 1983;93:95–109. doi: 10.1016/s0076-6879(83)93037-9. [DOI] [PubMed] [Google Scholar]
  8. DeLisi C. The effect of cell size and receptor density on ligand--receptor reaction rate constants. Mol Immunol. 1981 Jun;18(6):507–511. doi: 10.1016/0161-5890(81)90128-0. [DOI] [PubMed] [Google Scholar]
  9. Dowd C. J., Cooney C. L., Nugent M. A. Heparan sulfate mediates bFGF transport through basement membrane by diffusion with rapid reversible binding. J Biol Chem. 1999 Feb 19;274(8):5236–5244. doi: 10.1074/jbc.274.8.5236. [DOI] [PubMed] [Google Scholar]
  10. Edelman E. R., Adams D. H., Karnovsky M. J. Effect of controlled adventitial heparin delivery on smooth muscle cell proliferation following endothelial injury. Proc Natl Acad Sci U S A. 1990 May;87(10):3773–3777. doi: 10.1073/pnas.87.10.3773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Edelman E. R., Nugent M. A., Smith L. T., Karnovsky M. J. Basic fibroblast growth factor enhances the coupling of intimal hyperplasia and proliferation of vasa vasorum in injured rat arteries. J Clin Invest. 1992 Feb;89(2):465–473. doi: 10.1172/JCI115607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Esko Jeffrey D., Selleck Scott B. Order out of chaos: assembly of ligand binding sites in heparan sulfate. Annu Rev Biochem. 2001 Nov 9;71:435–471. doi: 10.1146/annurev.biochem.71.110601.135458. [DOI] [PubMed] [Google Scholar]
  13. Fuki I. V., Kuhn K. M., Lomazov I. R., Rothman V. L., Tuszynski G. P., Iozzo R. V., Swenson T. L., Fisher E. A., Williams K. J. The syndecan family of proteoglycans. Novel receptors mediating internalization of atherogenic lipoproteins in vitro. J Clin Invest. 1997 Sep 15;100(6):1611–1622. doi: 10.1172/JCI119685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Fuki I. V., Meyer M. E., Williams K. J. Transmembrane and cytoplasmic domains of syndecan mediate a multi-step endocytic pathway involving detergent-insoluble membrane rafts. Biochem J. 2000 Nov 1;351(Pt 3):607–612. [PMC free article] [PubMed] [Google Scholar]
  15. Galbiati F., Razani B., Lisanti M. P. Emerging themes in lipid rafts and caveolae. Cell. 2001 Aug 24;106(4):403–411. doi: 10.1016/s0092-8674(01)00472-x. [DOI] [PubMed] [Google Scholar]
  16. Geary R. L., Williams J. K., Golden D., Brown D. G., Benjamin M. E., Adams M. R. Time course of cellular proliferation, intimal hyperplasia, and remodeling following angioplasty in monkeys with established atherosclerosis. A nonhuman primate model of restenosis. Arterioscler Thromb Vasc Biol. 1996 Jan;16(1):34–43. doi: 10.1161/01.atv.16.1.34. [DOI] [PubMed] [Google Scholar]
  17. Gkantiragas I., Brügger B., Stüven E., Kaloyanova D., Li X. Y., Löhr K., Lottspeich F., Wieland F. T., Helms J. B. Sphingomyelin-enriched microdomains at the Golgi complex. Mol Biol Cell. 2001 Jun;12(6):1819–1833. doi: 10.1091/mbc.12.6.1819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Gleizes P. E., Noaillac-Depeyre J., Dupont M. A., Gas N. Basic fibroblast growth factor (FGF-2) is addressed to caveolae after binding to the plasma membrane of BHK cells. Eur J Cell Biol. 1996 Oct;71(2):144–153. [PubMed] [Google Scholar]
  19. Horowitz A., Simons M. Regulation of syndecan-4 phosphorylation in vivo. J Biol Chem. 1998 May 1;273(18):10914–10918. doi: 10.1074/jbc.273.18.10914. [DOI] [PubMed] [Google Scholar]
  20. Iozzo R. V. Matrix proteoglycans: from molecular design to cellular function. Annu Rev Biochem. 1998;67:609–652. doi: 10.1146/annurev.biochem.67.1.609. [DOI] [PubMed] [Google Scholar]
  21. Iozzo R. V., San Antonio J. D. Heparan sulfate proteoglycans: heavy hitters in the angiogenesis arena. J Clin Invest. 2001 Aug;108(3):349–355. doi: 10.1172/JCI13738. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kilsdonk E. P., Yancey P. G., Stoudt G. W., Bangerter F. W., Johnson W. J., Phillips M. C., Rothblat G. H. Cellular cholesterol efflux mediated by cyclodextrins. J Biol Chem. 1995 Jul 21;270(29):17250–17256. doi: 10.1074/jbc.270.29.17250. [DOI] [PubMed] [Google Scholar]
  23. Lafont F., Verkade P., Galli T., Wimmer C., Louvard D., Simons K. Raft association of SNAP receptors acting in apical trafficking in Madin-Darby canine kidney cells. Proc Natl Acad Sci U S A. 1999 Mar 30;96(7):3734–3738. doi: 10.1073/pnas.96.7.3734. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. McKeehan W. L., Wang F., Kan M. The heparan sulfate-fibroblast growth factor family: diversity of structure and function. Prog Nucleic Acid Res Mol Biol. 1998;59:135–176. doi: 10.1016/s0079-6603(08)61031-4. [DOI] [PubMed] [Google Scholar]
  25. Nugent M. A., Edelman E. R. Kinetics of basic fibroblast growth factor binding to its receptor and heparan sulfate proteoglycan: a mechanism for cooperactivity. Biochemistry. 1992 Sep 22;31(37):8876–8883. doi: 10.1021/bi00152a026. [DOI] [PubMed] [Google Scholar]
  26. Nugent M. A., Edelman E. R. Transforming growth factor beta 1 stimulates the production of basic fibroblast growth factor binding proteoglycans in Balb/c3T3 cells. J Biol Chem. 1992 Oct 15;267(29):21256–21264. [PubMed] [Google Scholar]
  27. Oliferenko S., Paiha K., Harder T., Gerke V., Schwärzler C., Schwarz H., Beug H., Günthert U., Huber L. A. Analysis of CD44-containing lipid rafts: Recruitment of annexin II and stabilization by the actin cytoskeleton. J Cell Biol. 1999 Aug 23;146(4):843–854. doi: 10.1083/jcb.146.4.843. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Orlandi P. A., Fishman P. H. Filipin-dependent inhibition of cholera toxin: evidence for toxin internalization and activation through caveolae-like domains. J Cell Biol. 1998 May 18;141(4):905–915. doi: 10.1083/jcb.141.4.905. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Park P. W., Reizes O., Bernfield M. Cell surface heparan sulfate proteoglycans: selective regulators of ligand-receptor encounters. J Biol Chem. 2000 Sep 29;275(39):29923–29926. doi: 10.1074/jbc.R000008200. [DOI] [PubMed] [Google Scholar]
  30. Plotnikov A. N., Schlessinger J., Hubbard S. R., Mohammadi M. Structural basis for FGF receptor dimerization and activation. Cell. 1999 Sep 3;98(5):641–650. doi: 10.1016/s0092-8674(00)80051-3. [DOI] [PubMed] [Google Scholar]
  31. Rapraeger A., Yeaman C. A quantitative solid-phase assay for identifying radiolabeled glycosaminoglycans in crude cell extracts. Anal Biochem. 1989 Jun;179(2):361–365. doi: 10.1016/0003-2697(89)90145-0. [DOI] [PubMed] [Google Scholar]
  32. Richardson T. P., Trinkaus-Randall V., Nugent M. A. Regulation of heparan sulfate proteoglycan nuclear localization by fibronectin. J Cell Sci. 2001 May;114(Pt 9):1613–1623. doi: 10.1242/jcs.114.9.1613. [DOI] [PubMed] [Google Scholar]
  33. Ryan T. A., Myers J., Holowka D., Baird B., Webb W. W. Molecular crowding on the cell surface. Science. 1988 Jan 1;239(4835):61–64. doi: 10.1126/science.2962287. [DOI] [PubMed] [Google Scholar]
  34. Saksela O., Moscatelli D., Sommer A., Rifkin D. B. Endothelial cell-derived heparan sulfate binds basic fibroblast growth factor and protects it from proteolytic degradation. J Cell Biol. 1988 Aug;107(2):743–751. doi: 10.1083/jcb.107.2.743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Schnitzer J. E., Oh P., Pinney E., Allard J. Filipin-sensitive caveolae-mediated transport in endothelium: reduced transcytosis, scavenger endocytosis, and capillary permeability of select macromolecules. J Cell Biol. 1994 Dec;127(5):1217–1232. doi: 10.1083/jcb.127.5.1217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Simons M., Horowitz A. Syndecan-4-mediated signalling. Cell Signal. 2001 Dec;13(12):855–862. doi: 10.1016/s0898-6568(01)00190-5. [DOI] [PubMed] [Google Scholar]
  37. Solomon K. R., Mallory M. A., Finberg R. W. Determination of the non-ionic detergent insolubility and phosphoprotein associations of glycosylphosphatidylinositol-anchored proteins expressed on T cells. Biochem J. 1998 Sep 1;334(Pt 2):325–333. doi: 10.1042/bj3340325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Sperinde G. V., Nugent M. A. Heparan sulfate proteoglycans control intracellular processing of bFGF in vascular smooth muscle cells. Biochemistry. 1998 Sep 22;37(38):13153–13164. doi: 10.1021/bi980600z. [DOI] [PubMed] [Google Scholar]
  39. Tkachenko Eugene, Simons Michael. Clustering induces redistribution of syndecan-4 core protein into raft membrane domains. J Biol Chem. 2002 Mar 11;277(22):19946–19951. doi: 10.1074/jbc.M200841200. [DOI] [PubMed] [Google Scholar]
  40. Tumova S., Woods A., Couchman J. R. Heparan sulfate proteoglycans on the cell surface: versatile coordinators of cellular functions. Int J Biochem Cell Biol. 2000 Mar;32(3):269–288. doi: 10.1016/s1357-2725(99)00116-8. [DOI] [PubMed] [Google Scholar]
  41. Turnbull J., Powell A., Guimond S. Heparan sulfate: decoding a dynamic multifunctional cell regulator. Trends Cell Biol. 2001 Feb;11(2):75–82. doi: 10.1016/s0962-8924(00)01897-3. [DOI] [PubMed] [Google Scholar]
  42. Venkataraman G., Raman R., Sasisekharan V., Sasisekharan R. Molecular characteristics of fibroblast growth factor-fibroblast growth factor receptor-heparin-like glycosaminoglycan complex. Proc Natl Acad Sci U S A. 1999 Mar 30;96(7):3658–3663. doi: 10.1073/pnas.96.7.3658. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Volk R., Schwartz J. J., Li J., Rosenberg R. D., Simons M. The role of syndecan cytoplasmic domain in basic fibroblast growth factor-dependent signal transduction. J Biol Chem. 1999 Aug 20;274(34):24417–24424. doi: 10.1074/jbc.274.34.24417. [DOI] [PubMed] [Google Scholar]
  44. Williams K. J., Fuki I. V. Cell-surface heparan sulfate proteoglycans: dynamic molecules mediating ligand catabolism. Curr Opin Lipidol. 1997 Oct;8(5):253–262. doi: 10.1097/00041433-199710000-00003. [DOI] [PubMed] [Google Scholar]
  45. Woods A., Oh E. S., Couchman J. R. Syndecan proteoglycans and cell adhesion. Matrix Biol. 1998 Nov;17(7):477–483. doi: 10.1016/s0945-053x(98)90095-6. [DOI] [PubMed] [Google Scholar]
  46. Wouters-Ballman P., Donnay I., Devleeschouwer N., Verstegen J. Iodination of mouse EGF with chloramine T at 4 degrees C: characterization of the iodinated peptide and comparison with other labelling methods. J Recept Signal Transduct Res. 1995 Apr;15(5):737–746. doi: 10.3109/10799899509079903. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES