Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 Apr 15;379(Pt 2):263–272. doi: 10.1042/BJ20031266

Purification and biochemical characterization of the D6 chemokine receptor.

Paul E Blackburn 1, Clare V Simpson 1, Robert J B Nibbs 1, Maureen O'Hara 1, Rhona Booth 1, Jemma Poulos 1, Neil W Isaacs 1, Gerard J Graham 1
PMCID: PMC1224083  PMID: 14723600

Abstract

There is much interest in chemokine receptors as therapeutic targets in diseases such as AIDS, autoimmune and inflammatory disorders, and cancer. Hampering such studies is the lack of accurate three-dimensional structural models of these molecules. The CC-chemokine receptor D6 is expressed at exceptionally high levels in heterologous transfectants. Here we report the purification and biochemical characterization of milligram quantities of D6 protein from relatively small cultures of transfected mammalian cells. Importantly, purified D6 retains full functional activity, shown by displaceable binding of 125I-labelled MIP-1beta (macrophage inflammatory protein-1beta) and by complete binding of the receptor to a MIP-1alpha affinity column. In addition, we show that D6 is decorated on the N-terminus by N-linked glycosylation. Mutational analysis reveals that this glycosylation is dispensable for ligand binding and high expression in transfected cells. Metabolic labelling has revealed the receptor to also be sulphated and phosphorylated. Phosphorylation is ligand independent and is not enhanced by ligand binding and internalization, suggesting similarities with the viral chemokine receptor homologue US28. Like US28, an analysis of the full cellular complement of D6 in transfected cells indicates that >80% is found associated with intracellular vesicular structures. This may account for the high quantities of D6 that can be synthesized in these cells. These unusual properties of D6, and the biochemical characterization described here, leads the way towards work aimed at generating the three-dimensional structure of this seven-transmembrane-spanning receptor.

Full Text

The Full Text of this article is available as a PDF (232.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aramori I., Ferguson S. S., Bieniasz P. D., Zhang J., Cullen B., Cullen M. G. Molecular mechanism of desensitization of the chemokine receptor CCR-5: receptor signaling and internalization are dissociable from its role as an HIV-1 co-receptor. EMBO J. 1997 Aug 1;16(15):4606–4616. doi: 10.1093/emboj/16.15.4606. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Babcock G. J., Mirzabekov T., Wojtowicz W., Sodroski J. Ligand binding characteristics of CXCR4 incorporated into paramagnetic proteoliposomes. J Biol Chem. 2001 Aug 6;276(42):38433–38440. doi: 10.1074/jbc.M106229200. [DOI] [PubMed] [Google Scholar]
  3. Bakhiet M., Tjernlund A., Mousa A., Gad A., Strömblad S., Kuziel W. A., Seiger A., Andersson J. RANTES promotes growth and survival of human first-trimester forebrain astrocytes. Nat Cell Biol. 2001 Feb;3(2):150–157. doi: 10.1038/35055057. [DOI] [PubMed] [Google Scholar]
  4. Borjigin J., Nathans J. Insertional mutagenesis as a probe of rhodopsin's topography, stability, and activity. J Biol Chem. 1994 May 20;269(20):14715–14722. [PubMed] [Google Scholar]
  5. Cashman Johanne, Clark-Lewis Ian, Eaves Allen, Eaves Connie. Stromal-derived factor 1 inhibits the cycling of very primitive human hematopoietic cells in vitro and in NOD/SCID mice. Blood. 2002 Feb 1;99(3):792–799. doi: 10.1182/blood.v99.3.792. [DOI] [PubMed] [Google Scholar]
  6. Clapham P. R. HIV and chemokines: ligands sharing cell-surface receptors. Trends Cell Biol. 1997 Jul;7(7):264–268. doi: 10.1016/S0962-8924(97)01075-1. [DOI] [PubMed] [Google Scholar]
  7. David N. E., Gee M., Andersen B., Naider F., Thorner J., Stevens R. C. Expression and purification of the Saccharomyces cerevisiae alpha-factor receptor (Ste2p), a 7-transmembrane-segment G protein-coupled receptor. J Biol Chem. 1997 Jun 13;272(24):15553–15561. doi: 10.1074/jbc.272.24.15553. [DOI] [PubMed] [Google Scholar]
  8. Doitsidou Maria, Reichman-Fried Michal, Stebler Jürg, Köprunner Marion, Dörries Julia, Meyer Dirk, Esguerra Camila V., Leung TinChung, Raz Erez. Guidance of primordial germ cell migration by the chemokine SDF-1. Cell. 2002 Nov 27;111(5):647–659. doi: 10.1016/s0092-8674(02)01135-2. [DOI] [PubMed] [Google Scholar]
  9. Farzan M., Mirzabekov T., Kolchinsky P., Wyatt R., Cayabyab M., Gerard N. P., Gerard C., Sodroski J., Choe H. Tyrosine sulfation of the amino terminus of CCR5 facilitates HIV-1 entry. Cell. 1999 Mar 5;96(5):667–676. doi: 10.1016/s0092-8674(00)80577-2. [DOI] [PubMed] [Google Scholar]
  10. Fra Anna M., Locati Massimo, Otero Karel, Sironi Marina, Signorelli Paola, Massardi Maria L., Gobbi Marco, Vecchi Annunciata, Sozzani Silvano, Mantovani Alberto. Cutting edge: scavenging of inflammatory CC chemokines by the promiscuous putatively silent chemokine receptor D6. J Immunol. 2003 Mar 1;170(5):2279–2282. doi: 10.4049/jimmunol.170.5.2279. [DOI] [PubMed] [Google Scholar]
  11. Fraile-Ramos A., Kledal T. N., Pelchen-Matthews A., Bowers K., Schwartz T. W., Marsh M. The human cytomegalovirus US28 protein is located in endocytic vesicles and undergoes constitutive endocytosis and recycling. Mol Biol Cell. 2001 Jun;12(6):1737–1749. doi: 10.1091/mbc.12.6.1737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fryksdale Beth G., Jedrzejewski Paul T., Wong David L., Gaertner Alfred L., Miller Brian S. Impact of deglycosylation methods on two-dimensional gel electrophoresis and matrix assisted laser desorption/ionization-time of flight-mass spectrometry for proteomic analysis. Electrophoresis. 2002 Jul;23(14):2184–2193. doi: 10.1002/1522-2683(200207)23:14<2184::AID-ELPS2184>3.0.CO;2-1. [DOI] [PubMed] [Google Scholar]
  13. Gerard C., Rollins B. J. Chemokines and disease. Nat Immunol. 2001 Feb;2(2):108–115. doi: 10.1038/84209. [DOI] [PubMed] [Google Scholar]
  14. Graham G. J. Growth inhibitors in haemopoiesis and leukaemogenesis. Baillieres Clin Haematol. 1997 Sep;10(3):539–559. doi: 10.1016/s0950-3536(97)80025-x. [DOI] [PubMed] [Google Scholar]
  15. Jones D., O'Hara C., Kraus M. D., Perez-Atayde A. R., Shahsafaei A., Wu L., Dorfman D. M. Expression pattern of T-cell-associated chemokine receptors and their chemokines correlates with specific subtypes of T-cell non-Hodgkin lymphoma. Blood. 2000 Jul 15;96(2):685–690. [PubMed] [Google Scholar]
  16. Klaassen C. H., Bovee-Geurts P. H., Decaluwé G. L., DeGrip W. J. Large-scale production and purification of functional recombinant bovine rhodopsin with the use of the baculovirus expression system. Biochem J. 1999 Sep 1;342(Pt 2):293–300. [PMC free article] [PubMed] [Google Scholar]
  17. Knaut Holger, Werz Christian, Geisler Robert, Nüsslein-Volhard Christiane, Tübingen 2000 Screen Consortium A zebrafish homologue of the chemokine receptor Cxcr4 is a germ-cell guidance receptor. Nature. 2002 Dec 18;421(6920):279–282. doi: 10.1038/nature01338. [DOI] [PubMed] [Google Scholar]
  18. Lataillade Jean-Jacques, Clay Denis, Bourin Philippe, Hérodin Françis, Dupuy Catherine, Jasmin Claude, Le Bousse-Kerdilès Marie-Caroline. Stromal cell-derived factor 1 regulates primitive hematopoiesis by suppressing apoptosis and by promoting G(0)/G(1) transition in CD34(+) cells: evidence for an autocrine/paracrine mechanism. Blood. 2002 Feb 15;99(4):1117–1129. doi: 10.1182/blood.v99.4.1117. [DOI] [PubMed] [Google Scholar]
  19. Mantovani A. The chemokine system: redundancy for robust outputs. Immunol Today. 1999 Jun;20(6):254–257. doi: 10.1016/s0167-5699(99)01469-3. [DOI] [PubMed] [Google Scholar]
  20. Melchers F., Rolink A. G., Schaniel C. The role of chemokines in regulating cell migration during humoral immune responses. Cell. 1999 Nov 12;99(4):351–354. doi: 10.1016/s0092-8674(00)81521-4. [DOI] [PubMed] [Google Scholar]
  21. Middleton J., Neil S., Wintle J., Clark-Lewis I., Moore H., Lam C., Auer M., Hub E., Rot A. Transcytosis and surface presentation of IL-8 by venular endothelial cells. Cell. 1997 Oct 31;91(3):385–395. doi: 10.1016/s0092-8674(00)80422-5. [DOI] [PubMed] [Google Scholar]
  22. Mirzabekov T., Bannert N., Farzan M., Hofmann W., Kolchinsky P., Wu L., Wyatt R., Sodroski J. Enhanced expression, native purification, and characterization of CCR5, a principal HIV-1 coreceptor. J Biol Chem. 1999 Oct 1;274(40):28745–28750. doi: 10.1074/jbc.274.40.28745. [DOI] [PubMed] [Google Scholar]
  23. Mirzabekov T., Kontos H., Farzan M., Marasco W., Sodroski J. Paramagnetic proteoliposomes containing a pure, native, and oriented seven-transmembrane segment protein, CCR5. Nat Biotechnol. 2000 Jun;18(6):649–654. doi: 10.1038/76501. [DOI] [PubMed] [Google Scholar]
  24. Mokros Thilo, Rehm Armin, Droese Jana, Oppermann Martin, Lipp Martin, Höpken Uta E. Surface expression and endocytosis of the human cytomegalovirus-encoded chemokine receptor US28 is regulated by agonist-independent phosphorylation. J Biol Chem. 2002 Sep 18;277(47):45122–45128. doi: 10.1074/jbc.M208214200. [DOI] [PubMed] [Google Scholar]
  25. Murphy P. M., Baggiolini M., Charo I. F., Hébert C. A., Horuk R., Matsushima K., Miller L. H., Oppenheim J. J., Power C. A. International union of pharmacology. XXII. Nomenclature for chemokine receptors. Pharmacol Rev. 2000 Mar;52(1):145–176. [PubMed] [Google Scholar]
  26. Müller A., Homey B., Soto H., Ge N., Catron D., Buchanan M. E., McClanahan T., Murphy E., Yuan W., Wagner S. N. Involvement of chemokine receptors in breast cancer metastasis. Nature. 2001 Mar 1;410(6824):50–56. doi: 10.1038/35065016. [DOI] [PubMed] [Google Scholar]
  27. Nibbs R. J., Kriehuber E., Ponath P. D., Parent D., Qin S., Campbell J. D., Henderson A., Kerjaschki D., Maurer D., Graham G. J. The beta-chemokine receptor D6 is expressed by lymphatic endothelium and a subset of vascular tumors. Am J Pathol. 2001 Mar;158(3):867–877. doi: 10.1016/s0002-9440(10)64035-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Nibbs R. J., Wylie S. M., Yang J., Landau N. R., Graham G. J. Cloning and characterization of a novel promiscuous human beta-chemokine receptor D6. J Biol Chem. 1997 Dec 19;272(51):32078–32083. doi: 10.1074/jbc.272.51.32078. [DOI] [PubMed] [Google Scholar]
  29. Ohtaki T., Ogi K., Masuda Y., Mitsuoka K., Fujiyoshi Y., Kitada C., Sawada H., Onda H., Fujino M. Expression, purification, and reconstitution of receptor for pituitary adenylate cyclase-activating polypeptide. large-scale purification of a functionally active G protein-coupled receptor produced in Sf9 insect cells. J Biol Chem. 1998 Jun 19;273(25):15464–15473. doi: 10.1074/jbc.273.25.15464. [DOI] [PubMed] [Google Scholar]
  30. Okada T., Palczewski K. Crystal structure of rhodopsin: implications for vision and beyond. Curr Opin Struct Biol. 2001 Aug;11(4):420–426. doi: 10.1016/s0959-440x(00)00227-x. [DOI] [PubMed] [Google Scholar]
  31. Palczewski K., Kumasaka T., Hori T., Behnke C. A., Motoshima H., Fox B. A., Le Trong I., Teller D. C., Okada T., Stenkamp R. E. Crystal structure of rhodopsin: A G protein-coupled receptor. Science. 2000 Aug 4;289(5480):739–745. doi: 10.1126/science.289.5480.739. [DOI] [PubMed] [Google Scholar]
  32. Pollok-Kopp Beatrix, Schwarze Katrin, Baradari Viola Katharina, Oppermann Martin. Analysis of ligand-stimulated CC chemokine receptor 5 (CCR5) phosphorylation in intact cells using phosphosite-specific antibodies. J Biol Chem. 2002 Oct 27;278(4):2190–2198. doi: 10.1074/jbc.M209844200. [DOI] [PubMed] [Google Scholar]
  33. Proudfoot Amanda E. I. Chemokine receptors: multifaceted therapeutic targets. Nat Rev Immunol. 2002 Feb;2(2):106–115. doi: 10.1038/nri722. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Rodríguez-Frade J. M., Mellado M., Martínez-A C. Chemokine receptor dimerization: two are better than one. Trends Immunol. 2001 Nov;22(11):612–617. doi: 10.1016/s1471-4906(01)02036-1. [DOI] [PubMed] [Google Scholar]
  35. Rollins B. J. Chemokines. Blood. 1997 Aug 1;90(3):909–928. [PubMed] [Google Scholar]
  36. Rossi D., Zlotnik A. The biology of chemokines and their receptors. Annu Rev Immunol. 2000;18:217–242. doi: 10.1146/annurev.immunol.18.1.217. [DOI] [PubMed] [Google Scholar]
  37. Sagné C., Isambert M. F., Henry J. P., Gasnier B. SDS-resistant aggregation of membrane proteins: application to the purification of the vesicular monoamine transporter. Biochem J. 1996 Jun 15;316(Pt 3):825–831. doi: 10.1042/bj3160825. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Seibert Christoph, Cadene Martine, Sanfiz Anthony, Chait Brian T., Sakmar Thomas P. Tyrosine sulfation of CCR5 N-terminal peptide by tyrosylprotein sulfotransferases 1 and 2 follows a discrete pattern and temporal sequence. Proc Natl Acad Sci U S A. 2002 Aug 8;99(17):11031–11036. doi: 10.1073/pnas.172380899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Shimada Masako, Chen Xin, Cvrk Tomas, Hilfiker Helene, Parfenova Maria, Segre Gino V. Purification and characterization of a receptor for human parathyroid hormone and parathyroid hormone-related peptide. J Biol Chem. 2002 Jun 21;277(35):31774–31780. doi: 10.1074/jbc.M204166200. [DOI] [PubMed] [Google Scholar]
  40. Szabo M. C., Soo K. S., Zlotnik A., Schall T. J. Chemokine class differences in binding to the Duffy antigen-erythrocyte chemokine receptor. J Biol Chem. 1995 Oct 27;270(43):25348–25351. doi: 10.1074/jbc.270.43.25348. [DOI] [PubMed] [Google Scholar]
  41. Tsai Hui-Hsin, Frost Emma, To Vivien, Robinson Shenandoah, Ffrench-Constant Charles, Geertman Robert, Ransohoff Richard M., Miller Robert H. The chemokine receptor CXCR2 controls positioning of oligodendrocyte precursors in developing spinal cord by arresting their migration. Cell. 2002 Aug 9;110(3):373–383. doi: 10.1016/s0092-8674(02)00838-3. [DOI] [PubMed] [Google Scholar]
  42. Venkatesan Sundararajan, Rose Jeremy J., Lodge Robert, Murphy Philip M., Foley John F. Distinct mechanisms of agonist-induced endocytosis for human chemokine receptors CCR5 and CXCR4. Mol Biol Cell. 2003 May 3;14(8):3305–3324. doi: 10.1091/mbc.E02-11-0714. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Warne Tony, Chirnside Jill, Schertler Gebhard F. X. Expression and purification of truncated, non-glycosylated turkey beta-adrenergic receptors for crystallization. Biochim Biophys Acta. 2003 Feb 17;1610(1):133–140. doi: 10.1016/s0005-2736(02)00716-2. [DOI] [PubMed] [Google Scholar]
  44. Zlotnik A., Yoshie O. Chemokines: a new classification system and their role in immunity. Immunity. 2000 Feb;12(2):121–127. doi: 10.1016/s1074-7613(00)80165-x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES