Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 Apr 15;379(Pt 2):217–227. doi: 10.1042/BJ20031230

Intracellular proteoglycans.

Svein Olav Kolset 1, Kristian Prydz 1, Gunnar Pejler 1
PMCID: PMC1224092  PMID: 14759226

Abstract

Proteoglycans (PGs) are proteins with glycosaminoglycan chains, are ubiquitously expressed and have a wide range of functions. PGs in the extracellular matrix and on the cell surface have been the subject of extensive structural and functional studies. Less attention has so far been given to PGs located in intracellular compartments, although several reports suggest that these have biological functions in storage granules, the nucleus and other intracellular organelles. The purpose of this review is, therefore, to present some of these studies and to discuss possible functions linked to PGs located in different intracellular compartments. Reference will be made to publications relevant for the topics we present. It is beyond the scope of this review to cover all publications on PGs in intracellular locations.

Full Text

The Full Text of this article is available as a PDF (203.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aldenborg F., Enerbäck L. Histochemical heterogeneity of dermal mast cells in athymic and normal rats. Histochem J. 1988 Jan;20(1):19–28. doi: 10.1007/BF01745965. [DOI] [PubMed] [Google Scholar]
  2. Aravind L., Koonin E. V. The DNA-repair protein AlkB, EGL-9, and leprecan define new families of 2-oxoglutarate- and iron-dependent dioxygenases. Genome Biol. 2001 Feb 19;2(3):RESEARCH0007–RESEARCH0007. doi: 10.1186/gb-2001-2-3-research0007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baici A., Bradamante P. Interaction between human leukocyte elastase and chondroitin sulfate. Chem Biol Interact. 1984 Sep 1;51(1):1–11. doi: 10.1016/0009-2797(84)90015-2. [DOI] [PubMed] [Google Scholar]
  4. Belting M., Persson S., Fransson L. A. Proteoglycan involvement in polyamine uptake. Biochem J. 1999 Mar 1;338(Pt 2):317–323. [PMC free article] [PubMed] [Google Scholar]
  5. Benting J. H., Rietveld A. G., Simons K. N-Glycans mediate the apical sorting of a GPI-anchored, raft-associated protein in Madin-Darby canine kidney cells. J Cell Biol. 1999 Jul 26;146(2):313–320. doi: 10.1083/jcb.146.2.313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bernfield M., Götte M., Park P. W., Reizes O., Fitzgerald M. L., Lincecum J., Zako M. Functions of cell surface heparan sulfate proteoglycans. Annu Rev Biochem. 1999;68:729–777. doi: 10.1146/annurev.biochem.68.1.729. [DOI] [PubMed] [Google Scholar]
  7. Bhavanandan V. P., Davidson E. A. Mucopolysaccharides associated with nuclei of cultured mammalian cells. Proc Natl Acad Sci U S A. 1975 Jun;72(6):2032–2036. doi: 10.1073/pnas.72.6.2032. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Biederbick Annette, Licht Alexander, Kleene Ralf. Serglycin proteoglycan is sorted into zymogen granules of rat pancreatic acinar cells. Eur J Cell Biol. 2003 Jan;82(1):19–29. doi: 10.1078/0171-9335-00287. [DOI] [PubMed] [Google Scholar]
  9. Björk I., Olson S. T. Antithrombin. A bloody important serpin. Adv Exp Med Biol. 1997;425:17–33. [PubMed] [Google Scholar]
  10. Bourdon M. A., Oldberg A., Pierschbacher M., Ruoslahti E. Molecular cloning and sequence analysis of a chondroitin sulfate proteoglycan cDNA. Proc Natl Acad Sci U S A. 1985 Mar;82(5):1321–1325. doi: 10.1073/pnas.82.5.1321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Brockstedt Ulrika, Dobra Katalin, Nurminen Mervi, Hjerpe Anders. Immunoreactivity to cell surface syndecans in cytoplasm and nucleus: tubulin-dependent rearrangements. Exp Cell Res. 2002 Apr 1;274(2):235–245. doi: 10.1006/excr.2002.5477. [DOI] [PubMed] [Google Scholar]
  12. Brändli A. W., Hansson G. C., Rodriguez-Boulan E., Simons K. A polarized epithelial cell mutant deficient in translocation of UDP-galactose into the Golgi complex. J Biol Chem. 1988 Nov 5;263(31):16283–16290. [PubMed] [Google Scholar]
  13. Busch S. J., Martin G. A., Barnhart R. L., Mano M., Cardin A. D., Jackson R. L. Trans-repressor activity of nuclear glycosaminoglycans on Fos and Jun/AP-1 oncoprotein-mediated transcription. J Cell Biol. 1992 Jan;116(1):31–42. doi: 10.1083/jcb.116.1.31. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Castle A. M., Castle J. D. Enhanced glycosylation and sulfation of secretory proteoglycans is coupled to the expression of a basic secretory protein. Mol Biol Cell. 1998 Mar;9(3):575–583. doi: 10.1091/mbc.9.3.575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Cavalcante Moisés C. M., de Andrade Leonardo R., Du Bocage Santos-Pinto Claudia, Straus Anita H., Takahashi Hélio K., Allodi Silvana, Pavão Mauro S. G. Colocalization of heparin and histamine in the intracellular granules of test cells from the invertebrate Styela plicata (Chordata-Tunicata). J Struct Biol. 2002 Mar;137(3):313–321. doi: 10.1016/s1047-8477(02)00007-2. [DOI] [PubMed] [Google Scholar]
  16. Cheng Fang, Mani Katrin, van den Born Jacob, Ding Kan, Belting Mattias, Fransson Lars-Ake. Nitric oxide-dependent processing of heparan sulfate in recycling S-nitrosylated glypican-1 takes place in caveolin-1-containing endosomes. J Biol Chem. 2002 Sep 10;277(46):44431–44439. doi: 10.1074/jbc.M205241200. [DOI] [PubMed] [Google Scholar]
  17. Chuang W. L., Christ M. D., Peng J., Rabenstein D. L. An NMR and molecular modeling study of the site-specific binding of histamine by heparin, chemically modified heparin, and heparin-derived oligosaccharides. Biochemistry. 2000 Apr 4;39(13):3542–3555. doi: 10.1021/bi9926025. [DOI] [PubMed] [Google Scholar]
  18. Collis L., Hall C., Lange L., Ziebell M., Prestwich R., Turley E. A. Rapid hyaluronan uptake is associated with enhanced motility: implications for an intracellular mode of action. FEBS Lett. 1998 Dec 4;440(3):444–449. doi: 10.1016/s0014-5793(98)01505-1. [DOI] [PubMed] [Google Scholar]
  19. Danielsson A., Raub E., Lindahl U., Björk I. Role of ternary complexes, in which heparin binds both antithrombin and proteinase, in the acceleration of the reactions between antithrombin and thrombin or factor Xa. J Biol Chem. 1986 Nov 25;261(33):15467–15473. [PubMed] [Google Scholar]
  20. Daphna E. M., Michaela S., Eynat P., Irit A., Rimon S. Association of myeloperoxidase with heparin: oxidative inactivation of proteins on the surface of endothelial cells by the bound enzyme. Mol Cell Biochem. 1998 Jun;183(1-2):55–61. doi: 10.1023/a:1006848730927. [DOI] [PubMed] [Google Scholar]
  21. Deepa Sarama Sathyaseelan, Umehara Yuko, Higashiyama Shigeki, Itoh Nobuyuki, Sugahara Kazuyuki. Specific molecular interactions of oversulfated chondroitin sulfate E with various heparin-binding growth factors. Implications as a physiological binding partner in the brain and other tissues. J Biol Chem. 2002 Sep 6;277(46):43707–43716. doi: 10.1074/jbc.M207105200. [DOI] [PubMed] [Google Scholar]
  22. Delehedde M., Seve M., Sergeant N., Wartelle I., Lyon M., Rudland P. S., Fernig D. G. Fibroblast growth factor-2 stimulation of p42/44MAPK phosphorylation and IkappaB degradation is regulated by heparan sulfate/heparin in rat mammary fibroblasts. J Biol Chem. 2000 Oct 27;275(43):33905–33910. doi: 10.1074/jbc.M005949200. [DOI] [PubMed] [Google Scholar]
  23. Ding K., Jonsson M., Mani K., Sandgren S., Belting M., Fransson L. A. N-unsubstituted glucosamine in heparan sulfate of recycling glypican-1 from suramin-treated and nitrite-deprived endothelial cells. mapping of nitric oxide/nitrite-susceptible glucosamine residues to clustered sites near the core protein. J Biol Chem. 2000 Nov 10;276(6):3885–3894. doi: 10.1074/jbc.M005238200. [DOI] [PubMed] [Google Scholar]
  24. Ding Kan, Mani Katrin, Cheng Fang, Belting Mattias, Fransson Lars-Ake. Copper-dependent autocleavage of glypican-1 heparan sulfate by nitric oxide derived from intrinsic nitrosothiols. J Biol Chem. 2002 Jun 25;277(36):33353–33360. doi: 10.1074/jbc.M203383200. [DOI] [PubMed] [Google Scholar]
  25. Eggli P. S., Graber W. Cytochemical localization of hyaluronan in rat and human skin mast cell granules. J Invest Dermatol. 1993 Feb;100(2):121–125. doi: 10.1111/1523-1747.ep12462777. [DOI] [PubMed] [Google Scholar]
  26. Enerbäck L., Kolset S. O., Kusche M., Hjerpe A., Lindahl U. Glycosaminoglycans in rat mucosal mast cells. Biochem J. 1985 Apr 15;227(2):661–668. doi: 10.1042/bj2270661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Ermolieff J., Boudier C., Laine A., Meyer B., Bieth J. G. Heparin protects cathepsin G against inhibition by protein proteinase inhibitors. J Biol Chem. 1994 Nov 25;269(47):29502–29508. [PubMed] [Google Scholar]
  28. Ermolieff J., Duranton J., Petitou M., Bieth J. G. Heparin accelerates the inhibition of cathepsin G by mucus proteinase inhibitor: potent effect of O-butyrylated heparin. Biochem J. 1998 Mar 15;330(Pt 3):1369–1374. doi: 10.1042/bj3301369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Esko Jeffrey D., Selleck Scott B. Order out of chaos: assembly of ligand binding sites in heparan sulfate. Annu Rev Biochem. 2001 Nov 9;71:435–471. doi: 10.1146/annurev.biochem.71.110601.135458. [DOI] [PubMed] [Google Scholar]
  30. Evanko S. P., Wight T. N. Intracellular localization of hyaluronan in proliferating cells. J Histochem Cytochem. 1999 Oct;47(10):1331–1342. doi: 10.1177/002215549904701013. [DOI] [PubMed] [Google Scholar]
  31. Falnes Pål Ø, Johansen Rune F., Seeberg Erling. AlkB-mediated oxidative demethylation reverses DNA damage in Escherichia coli. Nature. 2002 Sep 12;419(6903):178–182. doi: 10.1038/nature01048. [DOI] [PubMed] [Google Scholar]
  32. Fedarko N. S., Conrad H. E. A unique heparan sulfate in the nuclei of hepatocytes: structural changes with the growth state of the cells. J Cell Biol. 1986 Feb;102(2):587–599. doi: 10.1083/jcb.102.2.587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Forsberg E., Kjellén L. Heparan sulfate: lessons from knockout mice. J Clin Invest. 2001 Jul;108(2):175–180. doi: 10.1172/JCI13561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Forsberg E., Pejler G., Ringvall M., Lunderius C., Tomasini-Johansson B., Kusche-Gullberg M., Eriksson I., Ledin J., Hellman L., Kjellén L. Abnormal mast cells in mice deficient in a heparin-synthesizing enzyme. Nature. 1999 Aug 19;400(6746):773–776. doi: 10.1038/23488. [DOI] [PubMed] [Google Scholar]
  35. Frommherz K. J., Faller B., Bieth J. G. Heparin strongly decreases the rate of inhibition of neutrophil elastase by alpha 1-proteinase inhibitor. J Biol Chem. 1991 Aug 15;266(23):15356–15362. [PubMed] [Google Scholar]
  36. Furukawa K., Terayama H. Isolation and identification of glycosaminoglycans associated with purified nuclei from rat liver. Biochim Biophys Acta. 1977 Sep 29;499(2):278–289. doi: 10.1016/0304-4165(77)90010-1. [DOI] [PubMed] [Google Scholar]
  37. Furukawa K., Terayama H. Pattern of glycosaminoglycans and glycoproteins associated with nuclei of regenerating liver of rat. Biochim Biophys Acta. 1979 Jul 18;585(4):575–588. doi: 10.1016/0304-4165(79)90190-9. [DOI] [PubMed] [Google Scholar]
  38. Gallagher J. T. Heparan sulfate: growth control with a restricted sequence menu. J Clin Invest. 2001 Aug;108(3):357–361. doi: 10.1172/JCI13713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Gallagher J. T. The extended family of proteoglycans: social residents of the pericellular zone. Curr Opin Cell Biol. 1989 Dec;1(6):1201–1218. doi: 10.1016/s0955-0674(89)80072-9. [DOI] [PubMed] [Google Scholar]
  40. Ghildyal N., Friend D. S., Stevens R. L., Austen K. F., Huang C., Penrose J. F., Sali A., Gurish M. F. Fate of two mast cell tryptases in V3 mastocytosis and normal BALB/c mice undergoing passive systemic anaphylaxis: prolonged retention of exocytosed mMCP-6 in connective tissues, and rapid accumulation of enzymatically active mMCP-7 in the blood. J Exp Med. 1996 Sep 1;184(3):1061–1073. doi: 10.1084/jem.184.3.1061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Grammatikakis N., Grammatikakis A., Yoneda M., Yu Q., Banerjee S. D., Toole B. P. A novel glycosaminoglycan-binding protein is the vertebrate homologue of the cell cycle control protein, Cdc37. J Biol Chem. 1995 Jul 7;270(27):16198–16205. doi: 10.1074/jbc.270.27.16198. [DOI] [PubMed] [Google Scholar]
  42. Hallgren J., Estrada S., Karlson U., Alving K., Pejler G. Heparin antagonists are potent inhibitors of mast cell tryptase. Biochemistry. 2001 Jun 19;40(24):7342–7349. doi: 10.1021/bi001988c. [DOI] [PubMed] [Google Scholar]
  43. Hallgren J., Karlson U., Poorafshar M., Hellman L., Pejler G. Mechanism for activation of mouse mast cell tryptase: dependence on heparin and acidic pH for formation of active tetramers of mouse mast cell protease 6. Biochemistry. 2000 Oct 24;39(42):13068–13077. doi: 10.1021/bi000973b. [DOI] [PubMed] [Google Scholar]
  44. Hallgren J., Spillmann D., Pejler G. Structural requirements and mechanism for heparin-induced activation of a recombinant mouse mast cell tryptase, mouse mast cell protease-6: formation of active tryptase monomers in the presence of low molecular weight heparin. J Biol Chem. 2001 Aug 31;276(46):42774–42781. doi: 10.1074/jbc.M105531200. [DOI] [PubMed] [Google Scholar]
  45. Haltiwanger R. S., Blomberg M. A., Hart G. W. Glycosylation of nuclear and cytoplasmic proteins. Purification and characterization of a uridine diphospho-N-acetylglucosamine:polypeptide beta-N-acetylglucosaminyltransferase. J Biol Chem. 1992 May 5;267(13):9005–9013. [PubMed] [Google Scholar]
  46. Henningsson Frida, Ledin Johan, Lunderius Carolina, Wilén Maria, Hellman Lars, Pejler Gunnar. Altered storage of proteases in mast cells from mice lacking heparin: a possible role for heparin in carboxypeptidase A processing. Biol Chem. 2002 May;383(5):793–801. doi: 10.1515/BC.2002.083. [DOI] [PubMed] [Google Scholar]
  47. Hiscock D. R., Yanagishita M., Hascall V. C. Nuclear localization of glycosaminoglycans in rat ovarian granulosa cells. J Biol Chem. 1994 Feb 11;269(6):4539–4546. [PubMed] [Google Scholar]
  48. Hsia Edward, Richardson Thomas P., Nugent Matthew A. Nuclear localization of basic fibroblast growth factor is mediated by heparan sulfate proteoglycans through protein kinase C signaling. J Cell Biochem. 2003 Apr 15;88(6):1214–1225. doi: 10.1002/jcb.10470. [DOI] [PubMed] [Google Scholar]
  49. Huang C., De Sanctis G. T., O'Brien P. J., Mizgerd J. P., Friend D. S., Drazen J. M., Brass L. F., Stevens R. L. Evaluation of the substrate specificity of human mast cell tryptase beta I and demonstration of its importance in bacterial infections of the lung. J Biol Chem. 2001 May 2;276(28):26276–26284. doi: 10.1074/jbc.M102356200. [DOI] [PubMed] [Google Scholar]
  50. Humphries D. E., Nicodemus C. F., Schiller V., Stevens R. L. The human serglycin gene. Nucleotide sequence and methylation pattern in human promyelocytic leukemia HL-60 cells and T-lymphoblast Molt-4 cells. J Biol Chem. 1992 Jul 5;267(19):13558–13563. [PubMed] [Google Scholar]
  51. Humphries D. E., Wong G. W., Friend D. S., Gurish M. F., Qiu W. T., Huang C., Sharpe A. H., Stevens R. L. Heparin is essential for the storage of specific granule proteases in mast cells. Nature. 1999 Aug 19;400(6746):769–772. doi: 10.1038/23481. [DOI] [PubMed] [Google Scholar]
  52. Iozzo R. V. Matrix proteoglycans: from molecular design to cellular function. Annu Rev Biochem. 1998;67:609–652. doi: 10.1146/annurev.biochem.67.1.609. [DOI] [PubMed] [Google Scholar]
  53. Ishihara M., Fedarko N. S., Conrad H. E. Transport of heparan sulfate into the nuclei of hepatocytes. J Biol Chem. 1986 Oct 15;261(29):13575–13580. [PubMed] [Google Scholar]
  54. Itano N., Sawai T., Yoshida M., Lenas P., Yamada Y., Imagawa M., Shinomura T., Hamaguchi M., Yoshida Y., Ohnuki Y. Three isoforms of mammalian hyaluronan synthases have distinct enzymatic properties. J Biol Chem. 1999 Aug 27;274(35):25085–25092. doi: 10.1074/jbc.274.35.25085. [DOI] [PubMed] [Google Scholar]
  55. Jin L., Abrahams J. P., Skinner R., Petitou M., Pike R. N., Carrell R. W. The anticoagulant activation of antithrombin by heparin. Proc Natl Acad Sci U S A. 1997 Dec 23;94(26):14683–14688. doi: 10.1073/pnas.94.26.14683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Jönsson Mats, Eklund Erik, Fransson Lars-Ake, Oldberg Ake. Initiation of the decorin glycosaminoglycan chain in the endoplasmic reticulum-Golgi intermediate compartment. J Biol Chem. 2003 Mar 31;278(24):21415–21420. doi: 10.1074/jbc.M210977200. [DOI] [PubMed] [Google Scholar]
  57. Kawashima Hiroto, Atarashi Kazuyuki, Hirose Mayumi, Hirose Jun, Yamada Shuhei, Sugahara Kazuyuki, Miyasaka Masayuki. Oversulfated chondroitin/dermatan sulfates containing GlcAbeta1/IdoAalpha1-3GalNAc(4,6-O-disulfate) interact with L- and P-selectin and chemokines. J Biol Chem. 2002 Jan 30;277(15):12921–12930. doi: 10.1074/jbc.M200396200. [DOI] [PubMed] [Google Scholar]
  58. Kitagawa Hiroshi, Izumikawa Tomomi, Uyama Toru, Sugahara Kazuyuki. Molecular cloning of a chondroitin polymerizing factor that cooperates with chondroitin synthase for chondroitin polymerization. J Biol Chem. 2003 Apr 25;278(26):23666–23671. doi: 10.1074/jbc.M302493200. [DOI] [PubMed] [Google Scholar]
  59. Kjellén L., Lindahl U. Proteoglycans: structures and interactions. Annu Rev Biochem. 1991;60:443–475. doi: 10.1146/annurev.bi.60.070191.002303. [DOI] [PubMed] [Google Scholar]
  60. Kjellén L., Pettersson I., Lillhager P., Steen M. L., Pettersson U., Lehtonen P., Karlsson T., Ruoslahti E., Hellman L. Primary structure of a mouse mastocytoma proteoglycan core protein. Biochem J. 1989 Oct 1;263(1):105–113. doi: 10.1042/bj2630105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Koide T., Odani S., Takahashi K., Ono T., Sakuragawa N. Antithrombin III Toyama: replacement of arginine-47 by cysteine in hereditary abnormal antithrombin III that lacks heparin-binding ability. Proc Natl Acad Sci U S A. 1984 Jan;81(2):289–293. doi: 10.1073/pnas.81.2.289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Kolset S. O., Gallagher J. T. Proteoglycans in haemopoietic cells. Biochim Biophys Acta. 1990 Dec 11;1032(2-3):191–211. doi: 10.1016/0304-419x(90)90004-k. [DOI] [PubMed] [Google Scholar]
  63. Kolset S. O., Kjellén L., Seljelid R., Lindahl U. Changes in glycosaminoglycan biosynthesis during differentiation in vitro of human monocytes. Biochem J. 1983 Mar 15;210(3):661–667. doi: 10.1042/bj2100661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Kolset S. O., Vuong T. T., Prydz K. Apical secretion of chondroitin sulphate in polarized Madin-Darby canine kidney (MDCK) cells. J Cell Sci. 1999 Jun;112(Pt 11):1797–1801. doi: 10.1242/jcs.112.11.1797. [DOI] [PubMed] [Google Scholar]
  65. Kulseth M. A., Kolset S. O., Ranheim T. Stimulation of serglycin and CD44 mRNA expression in endothelial cells exposed to TNF-alpha and IL-1alpha. Biochim Biophys Acta. 1999 Aug 5;1428(2-3):225–232. doi: 10.1016/s0304-4165(99)00096-3. [DOI] [PubMed] [Google Scholar]
  66. Kusche-Gullberg M., Eriksson I., Pikas D. S., Kjellén L. Identification and expression in mouse of two heparan sulfate glucosaminyl N-deacetylase/N-sulfotransferase genes. J Biol Chem. 1998 May 8;273(19):11902–11907. doi: 10.1074/jbc.273.19.11902. [DOI] [PubMed] [Google Scholar]
  67. Lander A. D. Proteoglycans: master regulators of molecular encounter? Matrix Biol. 1998 Nov;17(7):465–472. doi: 10.1016/s0945-053x(98)90093-2. [DOI] [PubMed] [Google Scholar]
  68. Lander A. D., Selleck S. B. The elusive functions of proteoglycans: in vivo veritas. J Cell Biol. 2000 Jan 24;148(2):227–232. doi: 10.1083/jcb.148.2.227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Lemansky P., Hasilik A. Chondroitin sulfate is involved in lysosomal transport of lysozyme in U937 cells. J Cell Sci. 2001 Jan;114(Pt 2):345–352. doi: 10.1242/jcs.114.2.345. [DOI] [PubMed] [Google Scholar]
  70. Lemansky Peter, Gerecitano-Schmidek Mireille, Das Rajesh C., Schmidt Bernhard, Hasilik Andrej. Targeting myeloperoxidase to azurophilic granules in HL-60 cells. J Leukoc Biol. 2003 Jul 1;74(4):542–550. doi: 10.1189/jlb.1202616. [DOI] [PubMed] [Google Scholar]
  71. Liang Y., Häring M., Roughley P. J., Margolis R. K., Margolis R. U. Glypican and biglycan in the nuclei of neurons and glioma cells: presence of functional nuclear localization signals and dynamic changes in glypican during the cell cycle. J Cell Biol. 1997 Nov 17;139(4):851–864. doi: 10.1083/jcb.139.4.851. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Lidholt K., Eriksson I., Kjellén L. Heparin proteoglycans synthesized by mouse mastocytoma contain chondroitin sulphate. Biochem J. 1995 Oct 1;311(Pt 1):233–238. doi: 10.1042/bj3110233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Lindahl U., Bäckström G., Thunberg L., Leder I. G. Evidence for a 3-O-sulfated D-glucosamine residue in the antithrombin-binding sequence of heparin. Proc Natl Acad Sci U S A. 1980 Nov;77(11):6551–6555. doi: 10.1073/pnas.77.11.6551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Lüke H. J., Prehm P. Synthesis and shedding of hyaluronan from plasma membranes of human fibroblasts and metastatic and non-metastatic melanoma cells. Biochem J. 1999 Oct 1;343(Pt 1):71–75. [PMC free article] [PubMed] [Google Scholar]
  75. Maccarana M., Lindahl U. Mode of interaction between platelet factor 4 and heparin. Glycobiology. 1993 Jun;3(3):271–277. doi: 10.1093/glycob/3.3.271. [DOI] [PubMed] [Google Scholar]
  76. Maeda Nobuaki, He Jue, Yajima Yuki, Mikami Tadahisa, Sugahara Kazuyuki, Yabe Tomio. Heterogeneity of the chondroitin sulfate portion of phosphacan/6B4 proteoglycan regulates its binding affinity for pleiotrophin/heparin binding growth-associated molecule. J Biol Chem. 2003 Jul 2;278(37):35805–35811. doi: 10.1074/jbc.M305530200. [DOI] [PubMed] [Google Scholar]
  77. Mani K., Jönsson M., Edgren G., Belting M., Fransson L. A. A novel role for nitric oxide in the endogenous degradation of heparan sulfate during recycling of glypican-1 in vascular endothelial cells. Glycobiology. 2000 Jun;10(6):577–586. doi: 10.1093/glycob/10.6.577. [DOI] [PubMed] [Google Scholar]
  78. Margolis R. K., Crockett C. P., Kiang W. L., Margolis R. U. Glycosaminoglycans and glycoproteins associated with rat brain nuclei. Biochim Biophys Acta. 1976 Dec 21;451(2):465–469. doi: 10.1016/0304-4165(76)90141-0. [DOI] [PubMed] [Google Scholar]
  79. Martire G., Mottola G., Pascale M. C., Malagolini N., Turrini I., Serafini-Cessi F., Jackson M. R., Bonatti S. Different fate of a single reporter protein containing KDEL or KKXX targeting signals stably expressed in mammalian cells. J Biol Chem. 1996 Feb 16;271(7):3541–3547. doi: 10.1074/jbc.271.7.3541. [DOI] [PubMed] [Google Scholar]
  80. Masson D., Peters P. J., Geuze H. J., Borst J., Tschopp J. Interaction of chondroitin sulfate with perforin and granzymes of cytolytic T-cells is dependent on pH. Biochemistry. 1990 Dec 25;29(51):11229–11235. doi: 10.1021/bi00503a011. [DOI] [PubMed] [Google Scholar]
  81. Matsumoto R., Sali A., Ghildyal N., Karplus M., Stevens R. L. Packaging of proteases and proteoglycans in the granules of mast cells and other hematopoietic cells. A cluster of histidines on mouse mast cell protease 7 regulates its binding to heparin serglycin proteoglycans. J Biol Chem. 1995 Aug 18;270(33):19524–19531. doi: 10.1074/jbc.270.33.19524. [DOI] [PubMed] [Google Scholar]
  82. McEuen A. R., Ashworth D. M., Walls A. F. The conversion of recombinant human mast cell prochymase to enzymatically active chymase by dipeptidyl peptidase I is inhibited by heparin and histamine. Eur J Biochem. 1998 Apr 1;253(1):300–308. doi: 10.1046/j.1432-1327.1998.2530300.x. [DOI] [PubMed] [Google Scholar]
  83. Mertens G., Van der Schueren B., van den Berghe H., David G. Heparan sulfate expression in polarized epithelial cells: the apical sorting of glypican (GPI-anchored proteoglycan) is inversely related to its heparan sulfate content. J Cell Biol. 1996 Feb;132(3):487–497. doi: 10.1083/jcb.132.3.487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  84. Metkar Sunil S., Wang Baikun, Aguilar-Santelises Miguel, Raja Srikumar M., Uhlin-Hansen Lars, Podack Eckhard, Trapani Joseph A., Froelich Christopher J. Cytotoxic cell granule-mediated apoptosis: perforin delivers granzyme B-serglycin complexes into target cells without plasma membrane pore formation. Immunity. 2002 Mar;16(3):417–428. doi: 10.1016/s1074-7613(02)00286-8. [DOI] [PubMed] [Google Scholar]
  85. Mian N. Analysis of cell-growth-phase-related variations in hyaluronate synthase activity of isolated plasma-membrane fractions of cultured human skin fibroblasts. Biochem J. 1986 Jul 15;237(2):333–342. doi: 10.1042/bj2370333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  86. Mian N. Characterization of a high-Mr plasma-membrane-bound protein and assessment of its role as a constituent of hyaluronate synthase complex. Biochem J. 1986 Jul 15;237(2):343–357. doi: 10.1042/bj2370343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  87. Murakami M., Karnik S. S., Husain A. Human prochymase activation. A novel role for heparin in zymogen processing. J Biol Chem. 1995 Feb 3;270(5):2218–2223. [PubMed] [Google Scholar]
  88. Nadanaka S., Clement A., Masayama K., Faissner A., Sugahara K. Characteristic hexasaccharide sequences in octasaccharides derived from shark cartilage chondroitin sulfate D with a neurite outgrowth promoting activity. J Biol Chem. 1998 Feb 6;273(6):3296–3307. doi: 10.1074/jbc.273.6.3296. [DOI] [PubMed] [Google Scholar]
  89. Nakajima M., DeChavigny A., Johnson C. E., Hamada J., Stein C. A., Nicolson G. L. Suramin. A potent inhibitor of melanoma heparanase and invasion. J Biol Chem. 1991 May 25;266(15):9661–9666. [PubMed] [Google Scholar]
  90. Ng K. F., Schwartz N. B. Solubilization and partial purification of hyaluronate synthetase from oligodendroglioma cells. J Biol Chem. 1989 Jul 15;264(20):11776–11783. [PubMed] [Google Scholar]
  91. Nuwayhid N., Glaser J. H., Johnson J. C., Conrad H. E., Hauser S. C., Hirschberg C. B. Xylosylation and glucuronosylation reactions in rat liver Golgi apparatus and endoplasmic reticulum. J Biol Chem. 1986 Oct 5;261(28):12936–12941. [PubMed] [Google Scholar]
  92. Ohmori J., Nawa Y., Yang D. H., Tsuyama S., Murata F. Keratan sulfate glycosaminoglycans in murine eosinophil-specific granules. J Histochem Cytochem. 1999 Apr;47(4):481–488. doi: 10.1177/002215549904700406. [DOI] [PubMed] [Google Scholar]
  93. Ohtsu H., Tanaka S., Terui T., Hori Y., Makabe-Kobayashi Y., Pejler G., Tchougounova E., Hellman L., Gertsenstein M., Hirasawa N. Mice lacking histidine decarboxylase exhibit abnormal mast cells. FEBS Lett. 2001 Jul 27;502(1-2):53–56. doi: 10.1016/s0014-5793(01)02663-1. [DOI] [PubMed] [Google Scholar]
  94. Oynebråten I., Hansen B., Smedsrød B., Uhlin-Hansen L. Serglycin secreted by leukocytes is efficiently eliminated from the circulation by sinusoidal scavenger endothelial cells in the liver. J Leukoc Biol. 2000 Feb;67(2):183–188. doi: 10.1002/jlb.67.2.183. [DOI] [PubMed] [Google Scholar]
  95. Pejler G., Berg L. Regulation of rat mast cell protease 1 activity. Protease inhibition is prevented by heparin proteoglycan. Eur J Biochem. 1995 Oct 1;233(1):192–199. doi: 10.1111/j.1432-1033.1995.192_1.x. [DOI] [PubMed] [Google Scholar]
  96. Pejler G., Danielsson A., Björk I., Lindahl U., Nader H. B., Dietrich C. P. Structure and antithrombin-binding properties of heparin isolated from the clams Anomalocardia brasiliana and Tivela mactroides. J Biol Chem. 1987 Aug 25;262(24):11413–11421. [PubMed] [Google Scholar]
  97. Pejler G. Lactoferrin regulates the activity of heparin proteoglycan-bound mast cell chymase: characterization of the binding of heparin to lactoferrin. Biochem J. 1996 Dec 15;320(Pt 3):897–903. doi: 10.1042/bj3200897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  98. Pejler G., Maccarana M. Interaction of heparin with rat mast cell protease 1. J Biol Chem. 1994 May 20;269(20):14451–14456. [PubMed] [Google Scholar]
  99. Pejler G., Sadler J. E. Mechanism by which heparin proteoglycan modulates mast cell chymase activity. Biochemistry. 1999 Sep 14;38(37):12187–12195. doi: 10.1021/bi991046b. [DOI] [PubMed] [Google Scholar]
  100. Pereira P. J., Wang Z. M., Rubin H., Huber R., Bode W., Schechter N. M., Strobl S. The 2.2 A crystal structure of human chymase in complex with succinyl-Ala-Ala-Pro-Phe-chloromethylketone: structural explanation for its dipeptidyl carboxypeptidase specificity. J Mol Biol. 1999 Feb 12;286(1):163–173. doi: 10.1006/jmbi.1998.2462. [DOI] [PubMed] [Google Scholar]
  101. Philipson L. H., Schwartz N. B. Subcellular localization of hyaluronate synthetase in oligodendroglioma cells. J Biol Chem. 1984 Apr 25;259(8):5017–5023. [PubMed] [Google Scholar]
  102. Pikas D. S., Eriksson I., Kjellén L. Overexpression of different isoforms of glucosaminyl N-deacetylase/N-sulfotransferase results in distinct heparan sulfate N-sulfation patterns. Biochemistry. 2000 Apr 18;39(15):4552–4558. doi: 10.1021/bi992524l. [DOI] [PubMed] [Google Scholar]
  103. Prydz K., Dalen K. T. Synthesis and sorting of proteoglycans. J Cell Sci. 2000 Jan;113(Pt 2):193–205. doi: 10.1242/jcs.113.2.193. [DOI] [PubMed] [Google Scholar]
  104. Puglielli L., Hirschberg C. B. Reconstitution, identification, and purification of the rat liver golgi membrane GDP-fucose transporter. J Biol Chem. 1999 Dec 10;274(50):35596–35600. doi: 10.1074/jbc.274.50.35596. [DOI] [PubMed] [Google Scholar]
  105. Pummill P. E., Achyuthan A. M., DeAngelis P. L. Enzymological characterization of recombinant xenopus DG42, a vertebrate hyaluronan synthase. J Biol Chem. 1998 Feb 27;273(9):4976–4981. doi: 10.1074/jbc.273.9.4976. [DOI] [PubMed] [Google Scholar]
  106. Périn J. P., Bonnet F., Maillet P., Jollès P. Characterization and N-terminal sequence of human platelet proteoglycan. Biochem J. 1988 Nov 1;255(3):1007–1013. doi: 10.1042/bj2551007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  107. Raja Srikumar M., Wang Baikun, Dantuluri Mandakini, Desai Umesh R., Demeler Borries, Spiegel Katharina, Metkar Sunil S., Froelich Christopher J. Cytotoxic cell granule-mediated apoptosis. Characterization of the macromolecular complex of granzyme B with serglycin. J Biol Chem. 2002 Oct 17;277(51):49523–49530. doi: 10.1074/jbc.M209607200. [DOI] [PubMed] [Google Scholar]
  108. Reiland J., Rapraeger A. C. Heparan sulfate proteoglycan and FGF receptor target basic FGF to different intracellular destinations. J Cell Sci. 1993 Aug;105(Pt 4):1085–1093. doi: 10.1242/jcs.105.4.1085. [DOI] [PubMed] [Google Scholar]
  109. Ringvall M., Ledin J., Holmborn K., van Kuppevelt T., Ellin F., Eriksson I., Olofsson A. M., Kjellen L., Forsberg E. Defective heparan sulfate biosynthesis and neonatal lethality in mice lacking N-deacetylase/N-sulfotransferase-1. J Biol Chem. 2000 Aug 25;275(34):25926–25930. doi: 10.1074/jbc.C000359200. [DOI] [PubMed] [Google Scholar]
  110. Sakai K., Ren S., Schwartz L. B. A novel heparin-dependent processing pathway for human tryptase. Autocatalysis followed by activation with dipeptidyl peptidase I. J Clin Invest. 1996 Feb 15;97(4):988–995. doi: 10.1172/JCI118523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  111. Sali A., Matsumoto R., McNeil H. P., Karplus M., Stevens R. L. Three-dimensional models of four mouse mast cell chymases. Identification of proteoglycan binding regions and protease-specific antigenic epitopes. J Biol Chem. 1993 Apr 25;268(12):9023–9034. [PubMed] [Google Scholar]
  112. Salmivirta M., Lidholt K., Lindahl U. Heparan sulfate: a piece of information. FASEB J. 1996 Sep;10(11):1270–1279. doi: 10.1096/fasebj.10.11.8836040. [DOI] [PubMed] [Google Scholar]
  113. Sandgren Staffan, Cheng Fang, Belting Mattias. Nuclear targeting of macromolecular polyanions by an HIV-Tat derived peptide. Role for cell-surface proteoglycans. J Biol Chem. 2002 Aug 5;277(41):38877–38883. doi: 10.1074/jbc.M205395200. [DOI] [PubMed] [Google Scholar]
  114. Sayama S., Iozzo R. V., Lazarus G. S., Schechter N. M. Human skin chymotrypsin-like proteinase chymase. Subcellular localization to mast cell granules and interaction with heparin and other glycosaminoglycans. J Biol Chem. 1987 May 15;262(14):6808–6815. [PubMed] [Google Scholar]
  115. Scheiffele P., Peränen J., Simons K. N-glycans as apical sorting signals in epithelial cells. Nature. 1995 Nov 2;378(6552):96–98. doi: 10.1038/378096a0. [DOI] [PubMed] [Google Scholar]
  116. Schick B. P., Gradowski J. F., San Antonio J. D. Synthesis, secretion, and subcellular localization of serglycin proteoglycan in human endothelial cells. Blood. 2001 Jan 15;97(2):449–458. doi: 10.1182/blood.v97.2.449. [DOI] [PubMed] [Google Scholar]
  117. Schick B. P., Pestina T. I., San Antonio J. D., Stenberg P. E., Jackson C. W. Decreased serglycin proteoglycan size is associated with the platelet alpha granule storage defect in Wistar Furth hereditary macrothrombocytopenic rats. Serglycin binding affinity to type I collagen is unaltered. J Cell Physiol. 1997 Jul;172(1):87–93. doi: 10.1002/(SICI)1097-4652(199707)172:1<87::AID-JCP10>3.0.CO;2-L. [DOI] [PubMed] [Google Scholar]
  118. Schick Barbara P., Ho Hon-Chung Keith, Brodbeck Kristin C., Wrigley Clinton W., Klimas Joanne. Serglycin proteoglycan expression and synthesis in embryonic stem cells. Biochim Biophys Acta. 2003 Feb 17;1593(2-3):259–267. doi: 10.1016/s0167-4889(02)00396-8. [DOI] [PubMed] [Google Scholar]
  119. Schmidt K., Dartsch H., Linder D., Kern H. F., Kleene R. A submembranous matrix of proteoglycans on zymogen granule membranes is involved in granule formation in rat pancreatic acinar cells. J Cell Sci. 2000 Jun;113(Pt 12):2233–2242. doi: 10.1242/jcs.113.12.2233. [DOI] [PubMed] [Google Scholar]
  120. Schwartz L. B., Bradford T. R. Regulation of tryptase from human lung mast cells by heparin. Stabilization of the active tetramer. J Biol Chem. 1986 Jun 5;261(16):7372–7379. [PubMed] [Google Scholar]
  121. Selva E. M., Hong K., Baeg G. H., Beverley S. M., Turco S. J., Perrimon N., Häcker U. Dual role of the fringe connection gene in both heparan sulphate and fringe-dependent signalling events. Nat Cell Biol. 2001 Sep;3(9):809–815. doi: 10.1038/ncb0901-809. [DOI] [PubMed] [Google Scholar]
  122. Serafin W. E., Katz H. R., Austen K. F., Stevens R. L. Complexes of heparin proteoglycans, chondroitin sulfate E proteoglycans, and [3H]diisopropyl fluorophosphate-binding proteins are exocytosed from activated mouse bone marrow-derived mast cells. J Biol Chem. 1986 Nov 15;261(32):15017–15021. [PubMed] [Google Scholar]
  123. Shukla D., Liu J., Blaiklock P., Shworak N. W., Bai X., Esko J. D., Cohen G. H., Eisenberg R. J., Rosenberg R. D., Spear P. G. A novel role for 3-O-sulfated heparan sulfate in herpes simplex virus 1 entry. Cell. 1999 Oct 1;99(1):13–22. doi: 10.1016/s0092-8674(00)80058-6. [DOI] [PubMed] [Google Scholar]
  124. Shworak Nicholas W., HajMohammadi Sassan, de Agostini Ariane I., Rosenberg Robert D. Mice deficient in heparan sulfate 3-O-sulfotransferase-1: normal hemostasis with unexpected perinatal phenotypes. Glycoconj J. 2002 May-Jun;19(4-5):355–361. doi: 10.1023/A:1025377206600. [DOI] [PubMed] [Google Scholar]
  125. Stern Robert. Devising a pathway for hyaluronan catabolism: are we there yet? Glycobiology. 2003 Sep 26;13(12):105R–115R. doi: 10.1093/glycob/cwg112. [DOI] [PubMed] [Google Scholar]
  126. Stevens R. L., Fox C. C., Lichtenstein L. M., Austen K. F. Identification of chondroitin sulfate E proteoglycans and heparin proteoglycans in the secretory granules of human lung mast cells. Proc Natl Acad Sci U S A. 1988 Apr;85(7):2284–2287. doi: 10.1073/pnas.85.7.2284. [DOI] [PMC free article] [PubMed] [Google Scholar]
  127. Stevens R. L., Lee T. D., Seldin D. C., Austen K. F., Befus A. D., Bienenstock J. Intestinal mucosal mast cells from rats infected with Nippostrongylus brasiliensis contain protease-resistant chondroitin sulfate di-B proteoglycans. J Immunol. 1986 Jul 1;137(1):291–295. [PubMed] [Google Scholar]
  128. Sugahara K., Kitagawa H. Recent advances in the study of the biosynthesis and functions of sulfated glycosaminoglycans. Curr Opin Struct Biol. 2000 Oct;10(5):518–527. doi: 10.1016/s0959-440x(00)00125-1. [DOI] [PubMed] [Google Scholar]
  129. Sugahara Kazuyuki, Mikami Tadahisa, Uyama Toru, Mizuguchi Souhei, Nomura Kazuya, Kitagawa Hiroshi. Recent advances in the structural biology of chondroitin sulfate and dermatan sulfate. Curr Opin Struct Biol. 2003 Oct;13(5):612–620. doi: 10.1016/j.sbi.2003.09.011. [DOI] [PubMed] [Google Scholar]
  130. Tammi R., Rilla K., Pienimaki J. P., MacCallum D. K., Hogg M., Luukkonen M., Hascall V. C., Tammi M. Hyaluronan enters keratinocytes by a novel endocytic route for catabolism. J Biol Chem. 2001 Jul 12;276(37):35111–35122. doi: 10.1074/jbc.M103481200. [DOI] [PubMed] [Google Scholar]
  131. Tchougounova E., Pejler G. Regulation of extravascular coagulation and fibrinolysis by heparin-dependent mast cell chymase. FASEB J. 2001 Oct 29;15(14):2763–2765. doi: 10.1096/fj.01-0486fje. [DOI] [PubMed] [Google Scholar]
  132. Thompson H. L., Schulman E. S., Metcalfe D. D. Identification of chondroitin sulfate E in human lung mast cells. J Immunol. 1988 Apr 15;140(8):2708–2713. [PubMed] [Google Scholar]
  133. Toyama-Sorimachi N., Kitamura F., Habuchi H., Tobita Y., Kimata K., Miyasaka M. Widespread expression of chondroitin sulfate-type serglycins with CD44 binding ability in hematopoietic cells. J Biol Chem. 1997 Oct 17;272(42):26714–26719. doi: 10.1074/jbc.272.42.26714. [DOI] [PubMed] [Google Scholar]
  134. Tumova S., Hatch B. A., Law D. J., Bame K. J. Basic fibroblast growth factor does not prevent heparan sulphate proteoglycan catabolism in intact cells, but it alters the distribution of the glycosaminoglycan degradation products. Biochem J. 1999 Feb 1;337(Pt 3):471–481. [PMC free article] [PubMed] [Google Scholar]
  135. Uchimura Kenji, Kadomatsu Kenji, Nishimura Hitoshi, Muramatsu Hisako, Nakamura Eishin, Kurosawa Nobuyuki, Habuchi Osami, El-Fasakhany Fathy M., Yoshikai Yasunobu, Muramatsu Takashi. Functional analysis of the chondroitin 6-sulfotransferase gene in relation to lymphocyte subpopulations, brain development, and oversulfated chondroitin sulfates. J Biol Chem. 2001 Nov 5;277(2):1443–1450. doi: 10.1074/jbc.M104719200. [DOI] [PubMed] [Google Scholar]
  136. Uhlin-Hansen L., Wik T., Kjellén L., Berg E., Forsdahl F., Kolset S. O. Proteoglycan metabolism in normal and inflammatory human macrophages. Blood. 1993 Nov 1;82(9):2880–2889. [PubMed] [Google Scholar]
  137. Walsh R. L., Dillon T. J., Scicchitano R., McLennan G. Heparin and heparan sulphate are inhibitors of human leucocyte elastase. Clin Sci (Lond) 1991 Sep;81(3):341–346. doi: 10.1042/cs0810341. [DOI] [PubMed] [Google Scholar]
  138. Walter M., Plotnick M., Schechter N. M. Inhibition of human mast cell chymase by secretory leukocyte proteinase inhibitor: enhancement of the interaction by heparin. Arch Biochem Biophys. 1996 Mar 1;327(1):81–88. doi: 10.1006/abbi.1996.0095. [DOI] [PubMed] [Google Scholar]
  139. Wassenhove-McCarthy D. J., McCarthy K. J. Molecular characterization of a novel basement membrane-associated proteoglycan, leprecan. J Biol Chem. 1999 Aug 27;274(35):25004–25017. doi: 10.1074/jbc.274.35.25004. [DOI] [PubMed] [Google Scholar]
  140. Weitz Jeffrey I. Heparan sulfate: antithrombotic or not? J Clin Invest. 2003 Apr;111(7):952–954. doi: 10.1172/JCI18234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  141. Winberg J. O., Kolset S. O., Berg E., Uhlin-Hansen L. Macrophages secrete matrix metalloproteinase 9 covalently linked to the core protein of chondroitin sulphate proteoglycans. J Mol Biol. 2000 Dec 8;304(4):669–680. doi: 10.1006/jmbi.2000.4235. [DOI] [PubMed] [Google Scholar]
  142. Yanagishita M., Hascall V. C. Cell surface heparan sulfate proteoglycans. J Biol Chem. 1992 May 15;267(14):9451–9454. [PubMed] [Google Scholar]
  143. Yoneda Atsuko, Couchman John R. Regulation of cytoskeletal organization by syndecan transmembrane proteoglycans. Matrix Biol. 2003 Mar;22(1):25–33. doi: 10.1016/s0945-053x(03)00010-6. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES