Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 May 1;379(Pt 3):687–695. doi: 10.1042/BJ20031425

DES2 protein is responsible for phytoceramide biosynthesis in the mouse small intestine.

Fumio Omae 1, Masao Miyazaki 1, Ayako Enomoto 1, Minoru Suzuki 1, Yusuke Suzuki 1, Akemi Suzuki 1
PMCID: PMC1224108  PMID: 14731113

Abstract

The C-4 hydroxylation of sphinganine and dihydroceramide is a rate-limiting reaction in the biosynthesis of phytosphingolipids. Mouse DES1 (MDES1) cDNA homologous to the Drosophila melanogaster degenerative spermatocyte gene-1 (des-1) cDNA leads to sphingosine Delta4-desaturase activity, and another mouse homologue, MDES2, has bifunctional activity, producing C-4 hydroxysphinganine and Delta4-sphingenine in yeast [Ternes, Franke, Zahringer, Sperling and Heinz (2002) J. Biol. Chem. 277, 25512-25518]. Here, we report the characterization of mouse DES2 (MDES2) using an in vitro assay with a homogenate of COS-7 cells transfected with MDES2 cDNA and N -octanoyl-sphinganine and sphinganine as substrates. MDES2 protein prefers dihydroceramide as a substrate to sphinganine, and exhibits dihydroceramide Delta4-desaturase and C-4 hydroxylase activities. MDES2 mRNA content was high in the small intestine and abundant in the kidney. In situ hybridization detected signals of MDES2 mRNA in the crypt cells. Immunohistochemistry using an anti-MDES2 peptide antibody stained the crypt cells and the adjacent epithelial cells. These results suggest that MDES2 is the dihydroceramide C-4 hydroxylase responsible for the biosynthesis of enriched phytosphingoglycolipids in the microvillous membranes of intestinal epithelial cells.

Full Text

The Full Text of this article is available as a PDF (268.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bieberich E., Freischütz B., Suzuki M., Yu R. K. Differential effects of glycolipid biosynthesis inhibitors on ceramide-induced cell death in neuroblastoma cells. J Neurochem. 1999 Mar;72(3):1040–1049. doi: 10.1046/j.1471-4159.1999.0721040.x. [DOI] [PubMed] [Google Scholar]
  2. Breimer M. E., Falk K. E., Hansson G. C., Karlsson K. A. Structural identification of two ten-sugar branched chain glycosphingolipids of blood group H type present in epithelial cells of rat small intestine. J Biol Chem. 1982 Jan 10;257(1):50–59. [PubMed] [Google Scholar]
  3. Breimer M. E., Karlsson K. A., Samuelsson B. E. Presence of phytosphingosine combined with 2-hydroxy fatty acids in sphingomyelins of bovine kidney and intestinal mucosa. Lipids. 1975 Jan;10(1):17–19. doi: 10.1007/BF02532188. [DOI] [PubMed] [Google Scholar]
  4. CARTER H. E., CELMER W. D., LANDS W. E., MUELLER K. L., TOMIZAWA H. H. Biochemistry of the sphingolipides. VIII. Occurrence of a long chain base in plant phosphatides. J Biol Chem. 1954 Feb;206(2):613–623. [PubMed] [Google Scholar]
  5. Cadena D. L., Kurten R. C., Gill G. N. The product of the MLD gene is a member of the membrane fatty acid desaturase family: overexpression of MLD inhibits EGF receptor biosynthesis. Biochemistry. 1997 Jun 10;36(23):6960–6967. doi: 10.1021/bi970091l. [DOI] [PubMed] [Google Scholar]
  6. Carter H. E., Gaver R. C., Yu R. K. A novel branched-chain sphingolipid base from Crithidia fasciculata. Biochem Biophys Res Commun. 1966 Feb 3;22(3):316–320. doi: 10.1016/0006-291x(66)90484-0. [DOI] [PubMed] [Google Scholar]
  7. Causeret C., Geeraert L., Van der Hoeven G., Mannaerts G. P., Van Veldhoven P. P. Further characterization of rat dihydroceramide desaturase: tissue distribution, subcellular localization, and substrate specificity. Lipids. 2000 Oct;35(10):1117–1125. doi: 10.1007/s11745-000-0627-6. [DOI] [PubMed] [Google Scholar]
  8. Crossman M. W., Hirschberg C. B. Biosynthesis of phytosphingosine by the rat. J Biol Chem. 1977 Aug 25;252(16):5815–5819. [PubMed] [Google Scholar]
  9. Dearborn D. G., Smith S., Korn E. D. Lipophosphonoglycan of the plasma membrane of A canthamoeba castellanii. Inositol and phytosphingosine content and general structural features. J Biol Chem. 1976 May 25;251(10):2976–2982. [PubMed] [Google Scholar]
  10. Endo K., Akiyama T., Kobayashi S., Okada M. Degenerative spermatocyte, a novel gene encoding a transmembrane protein required for the initiation of meiosis in Drosophila spermatogenesis. Mol Gen Genet. 1996 Nov 27;253(1-2):157–165. doi: 10.1007/s004380050308. [DOI] [PubMed] [Google Scholar]
  11. Endo K., Matsuda Y., Kobayashi S. Mdes, a mouse homolog of the Drosophila degenerative spermatocyte gene is expressed during mouse spermatogenesis. Dev Growth Differ. 1997 Jun;39(3):399–403. doi: 10.1046/j.1440-169x.1997.00015.x. [DOI] [PubMed] [Google Scholar]
  12. Galand G. Brush border membrane sucrase-isomaltase, maltase-glucoamylase and trehalase in mammals. Comparative development, effects of glucocorticoids, molecular mechanisms, and phylogenetic implications. Comp Biochem Physiol B. 1989;94(1):1–11. doi: 10.1016/0305-0491(89)90002-3. [DOI] [PubMed] [Google Scholar]
  13. Geeraert L., Mannaerts G. P., van Veldhoven P. P. Conversion of dihydroceramide into ceramide: involvement of a desaturase. Biochem J. 1997 Oct 1;327(Pt 1):125–132. doi: 10.1042/bj3270125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Greene M. L., Kaneshiro T., Law J. H. Studies on the production of sphingolipid bases by the yeast, Hansenula ciferri. Biochim Biophys Acta. 1965 Jun 1;98(3):582–588. doi: 10.1016/0005-2760(65)90155-4. [DOI] [PubMed] [Google Scholar]
  15. Grilley M. M., Stock S. D., Dickson R. C., Lester R. L., Takemoto J. Y. Syringomycin action gene SYR2 is essential for sphingolipid 4-hydroxylation in Saccharomyces cerevisiae. J Biol Chem. 1998 May 1;273(18):11062–11068. doi: 10.1074/jbc.273.18.11062. [DOI] [PubMed] [Google Scholar]
  16. Haak D., Gable K., Beeler T., Dunn T. Hydroxylation of Saccharomyces cerevisiae ceramides requires Sur2p and Scs7p. J Biol Chem. 1997 Nov 21;272(47):29704–29710. doi: 10.1074/jbc.272.47.29704. [DOI] [PubMed] [Google Scholar]
  17. Hamanaka Sumiko, Hara Mariko, Nishio Hiroyuki, Otsuka Fujio, Suzuki Akemi, Uchida Yoshikazu. Human epidermal glucosylceramides are major precursors of stratum corneum ceramides. J Invest Dermatol. 2002 Aug;119(2):416–423. doi: 10.1046/j.1523-1747.2002.01836.x. [DOI] [PubMed] [Google Scholar]
  18. Ichikawa S., Hirabayashi Y. Glucosylceramide synthase and glycosphingolipid synthesis. Trends Cell Biol. 1998 May;8(5):198–202. doi: 10.1016/s0962-8924(98)01249-5. [DOI] [PubMed] [Google Scholar]
  19. Karlsson K. A., Samuelsson B. E., Steen G. O. Identification of hitherto unknown branched-chain bases in sulphatides of the salt (rectal) gland of spiny dogfish. Biochim Biophys Acta. 1973 May 24;306(2):307–316. doi: 10.1016/0005-2760(73)90236-1. [DOI] [PubMed] [Google Scholar]
  20. Kochetkov N. K., Smirnova G. P., Chekareva N. V. Isolation and structural studies of a sulfated sialosphingolipid from the sea urchin Echinocardium cordatum. Biochim Biophys Acta. 1976 Feb 23;424(2):274–283. doi: 10.1016/0005-2760(76)90195-8. [DOI] [PubMed] [Google Scholar]
  21. Lam Mandy M., O'Connor Timothy P., Diamond Jared. Loads, capacities and safety factors of maltase and the glucose transporter SGLT1 in mouse intestinal brush border. J Physiol. 2002 Jul 15;542(Pt 2):493–500. doi: 10.1113/jphysiol.2002.023275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ohta H., Ruan F., Hakomori S., Igarashi Y. Quantification of free sphingosine in cultured cells by acylation with radioactive acetic anhydride. Anal Biochem. 1994 Nov 1;222(2):489–494. doi: 10.1006/abio.1994.1522. [DOI] [PubMed] [Google Scholar]
  23. Okabe K., Keenan R. W., Schmidt G. Phytosphingosine groups as quantitatively significant components of the sphingolipids of the mucosa of the small intestines of some mammalian species. Biochem Biophys Res Commun. 1968 Apr 5;31(1):137–143. doi: 10.1016/0006-291x(68)90043-0. [DOI] [PubMed] [Google Scholar]
  24. Root Carolyn, Smith Chari D., Sundseth Scott S., Pink Heather M., Wilson Joan G., Lewis Michael C. Ileal bile acid transporter inhibition, CYP7A1 induction, and antilipemic action of 264W94. J Lipid Res. 2002 Aug;43(8):1320–1330. [PubMed] [Google Scholar]
  25. Schulze H., Michel C., van Echten-Deckert G. Dihydroceramide desaturase. Methods Enzymol. 2000;311:22–30. doi: 10.1016/s0076-6879(00)11063-8. [DOI] [PubMed] [Google Scholar]
  26. Schwarzmann G. A simple and novel method for tritium labeling of gangliosides and other sphingolipids. Biochim Biophys Acta. 1978 Apr 28;529(1):106–114. doi: 10.1016/0005-2760(78)90108-x. [DOI] [PubMed] [Google Scholar]
  27. Sekine M., Suzuki M., Inagaki F., Suzuki A., Yamakawa T. A new extended globoglycolipid carrying the stage specific embryonic antigen-1 (SSEA-1) determinant in mouse kidney. J Biochem. 1987 Mar;101(3):553–562. doi: 10.1093/jb/101.3.553. [DOI] [PubMed] [Google Scholar]
  28. Simons K., Ikonen E. Functional rafts in cell membranes. Nature. 1997 Jun 5;387(6633):569–572. doi: 10.1038/42408. [DOI] [PubMed] [Google Scholar]
  29. Smith William L., Merrill Alfred H., Jr Sphingolipid metabolism and signaling minireview series. J Biol Chem. 2002 Jun 4;277(29):25841–25842. doi: 10.1074/jbc.R200011200. [DOI] [PubMed] [Google Scholar]
  30. Sperling P., Ternes P., Moll H., Franke S., Zähringer U., Heinz E. Functional characterization of sphingolipid C4-hydroxylase genes from Arabidopsis thaliana. FEBS Lett. 2001 Apr 6;494(1-2):90–94. doi: 10.1016/s0014-5793(01)02332-8. [DOI] [PubMed] [Google Scholar]
  31. Stahl A., Hirsch D. J., Gimeno R. E., Punreddy S., Ge P., Watson N., Patel S., Kotler M., Raimondi A., Tartaglia L. A. Identification of the major intestinal fatty acid transport protein. Mol Cell. 1999 Sep;4(3):299–308. doi: 10.1016/s1097-2765(00)80332-9. [DOI] [PubMed] [Google Scholar]
  32. Suzuki A., Yamakawa T. The different distribution of asialo GM1 and Forssman antigen in the small intestine of mouse demonstrated by immunofluorescence staining. J Biochem. 1981 Nov;90(5):1541–1544. doi: 10.1093/oxfordjournals.jbchem.a133622. [DOI] [PubMed] [Google Scholar]
  33. Takebe Y., Seiki M., Fujisawa J., Hoy P., Yokota K., Arai K., Yoshida M., Arai N. SR alpha promoter: an efficient and versatile mammalian cDNA expression system composed of the simian virus 40 early promoter and the R-U5 segment of human T-cell leukemia virus type 1 long terminal repeat. Mol Cell Biol. 1988 Jan;8(1):466–472. doi: 10.1128/mcb.8.1.466. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Ternes Philipp, Franke Stephan, Zähringer Ulrich, Sperling Petra, Heinz Ernst. Identification and characterization of a sphingolipid delta 4-desaturase family. J Biol Chem. 2002 Apr 5;277(28):25512–25518. doi: 10.1074/jbc.M202947200. [DOI] [PubMed] [Google Scholar]
  35. Umesaki Y., Suzuki A., Kasama T., Tohyama K., Mutai M., Yamakawa T. Presence of asialo GM1 and glucosylceramide in the intestinal mucosa of mice and induction of fucosyl asialo GM1 by conventionalization of germ-free mice. J Biochem. 1981 Dec;90(6):1731–1738. doi: 10.1093/oxfordjournals.jbchem.a133650. [DOI] [PubMed] [Google Scholar]
  36. Verri Anna, Laforenza Umberto, Gastaldi Giulia, Tosco Marisa, Rindi Gianguido. Molecular characteristics of small intestinal and renal brush border thiamin transporters in rats. Biochim Biophys Acta. 2002 Feb 1;1558(2):187–197. doi: 10.1016/s0005-2736(01)00430-8. [DOI] [PubMed] [Google Scholar]
  37. van Meer Gerrit, Lisman Quirine. Sphingolipid transport: rafts and translocators. J Biol Chem. 2002 May 13;277(29):25855–25858. doi: 10.1074/jbc.R200010200. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES