Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 May 1;379(Pt 3):665–672. doi: 10.1042/BJ20031785

Interactions of histatin 5 and histatin 5-derived peptides with liposome membranes: surface effects, translocation and permeabilization.

Alice L Den Hertog 1, Harro W Wong Fong Sang 1, Ruud Kraayenhof 1, Jan G M Bolscher 1, Wim Van't Hof 1, Enno C I Veerman 1, Arie V Nieuw Amerongen 1
PMCID: PMC1224109  PMID: 14733612

Abstract

A number of cationic antimicrobial peptides, among which are histatin 5 and the derived peptides dhvar4 and dhvar5, enter their target cells and interact with internal organelles. There still are questions about the mechanisms by which antimicrobial peptides translocate across the membrane. We used a liposome model to study membrane binding, translocation and membrane-perturbing capacities of histatin 5, dhvar4 and dhvar5. Despite the differences in amphipathic characters of these peptides, they bound equally well to liposomes, whereas their membrane activities differed remarkably: dhvar4 translocated at the fastest rate, followed by dhvar5, whereas the histatin 5 translocation rate was much lower. The same pattern was seen for the extent of calcein release: highest with dhvar4, less with dhvar5 and almost none with histatin 5. The translocation and disruptive actions of dhvar5 did not seem to be coupled, because translocation occurred on a much longer timescale than calcein release, which ended within a few minutes. We conclude that peptide translocation can occur through peptide-phospholipid interactions, and that this is a possible mechanism by which antimicrobial peptides enter cells. However, the translocation rate was much lower in this model membrane system than that seen in yeast cells. Thus it is likely that, at least for some peptides, additional features promoting the translocation across biological membranes are involved as well.

Full Text

The Full Text of this article is available as a PDF (138.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Basañez Gorka, Shinnar Ann E., Zimmerberg Joshua. Interaction of hagfish cathelicidin antimicrobial peptides with model lipid membranes. FEBS Lett. 2002 Dec 4;532(1-2):115–120. doi: 10.1016/s0014-5793(02)03651-7. [DOI] [PubMed] [Google Scholar]
  2. Bikker Floris J., Ligtenberg Antoon J. M., Nazmi Kamran, Veerman Enno C. I., van't Hof Wim, Bolscher Jan G. M., Poustka Annemarie, Nieuw Amerongen Arie V., Mollenhauer Jan. Identification of the bacteria-binding peptide domain on salivary agglutinin (gp-340/DMBT1), a member of the scavenger receptor cysteine-rich superfamily. J Biol Chem. 2002 Jun 5;277(35):32109–32115. doi: 10.1074/jbc.M203788200. [DOI] [PubMed] [Google Scholar]
  3. Boman H. G. Innate immunity and the normal microflora. Immunol Rev. 2000 Feb;173:5–16. doi: 10.1034/j.1600-065x.2000.917301.x. [DOI] [PubMed] [Google Scholar]
  4. Edgerton M., Koshlukova S. E., Lo T. E., Chrzan B. G., Straubinger R. M., Raj P. A. Candidacidal activity of salivary histatins. Identification of a histatin 5-binding protein on Candida albicans. J Biol Chem. 1998 Aug 7;273(32):20438–20447. doi: 10.1074/jbc.273.32.20438. [DOI] [PubMed] [Google Scholar]
  5. Falla T. J., Karunaratne D. N., Hancock R. E. Mode of action of the antimicrobial peptide indolicidin. J Biol Chem. 1996 Aug 9;271(32):19298–19303. doi: 10.1074/jbc.271.32.19298. [DOI] [PubMed] [Google Scholar]
  6. Friedrich C. L., Moyles D., Beveridge T. J., Hancock R. E. Antibacterial action of structurally diverse cationic peptides on gram-positive bacteria. Antimicrob Agents Chemother. 2000 Aug;44(8):2086–2092. doi: 10.1128/aac.44.8.2086-2092.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Futaki Shiroh. Arginine-rich peptides: potential for intracellular delivery of macromolecules and the mystery of the translocation mechanisms. Int J Pharm. 2002 Oct 1;245(1-2):1–7. doi: 10.1016/s0378-5173(02)00337-x. [DOI] [PubMed] [Google Scholar]
  8. Gennaro R., Zanetti M. Structural features and biological activities of the cathelicidin-derived antimicrobial peptides. Biopolymers. 2000;55(1):31–49. doi: 10.1002/1097-0282(2000)55:1<31::AID-BIP40>3.0.CO;2-9. [DOI] [PubMed] [Google Scholar]
  9. Gyurko C., Lendenmann U., Helmerhorst E. J., Troxler R. F., Oppenheim F. G. Killing of Candida albicans by histatin 5: cellular uptake and energy requirement. Antonie Van Leeuwenhoek. 2001 Sep;79(3-4):297–309. doi: 10.1023/a:1012070600340. [DOI] [PubMed] [Google Scholar]
  10. Hancock R. E. Cationic peptides: effectors in innate immunity and novel antimicrobials. Lancet Infect Dis. 2001 Oct;1(3):156–164. doi: 10.1016/S1473-3099(01)00092-5. [DOI] [PubMed] [Google Scholar]
  11. Hancock R. E., Chapple D. S. Peptide antibiotics. Antimicrob Agents Chemother. 1999 Jun;43(6):1317–1323. doi: 10.1128/aac.43.6.1317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Haukland H. H., Ulvatne H., Sandvik K., Vorland L. H. The antimicrobial peptides lactoferricin B and magainin 2 cross over the bacterial cytoplasmic membrane and reside in the cytoplasm. FEBS Lett. 2001 Nov 23;508(3):389–393. doi: 10.1016/s0014-5793(01)03100-3. [DOI] [PubMed] [Google Scholar]
  13. Helmerhorst E. J., Breeuwer P., van't Hof W., Walgreen-Weterings E., Oomen L. C., Veerman E. C., Amerongen A. V., Abee T. The cellular target of histatin 5 on Candida albicans is the energized mitochondrion. J Biol Chem. 1999 Mar 12;274(11):7286–7291. doi: 10.1074/jbc.274.11.7286. [DOI] [PubMed] [Google Scholar]
  14. Helmerhorst E. J., van't Hof W., Breeuwer P., Veerman E. C., Abee T., Troxler R. F., Amerongen A. V., Oppenheim F. G. Characterization of histatin 5 with respect to amphipathicity, hydrophobicity, and effects on cell and mitochondrial membrane integrity excludes a candidacidal mechanism of pore formation. J Biol Chem. 2000 Nov 30;276(8):5643–5649. doi: 10.1074/jbc.M008229200. [DOI] [PubMed] [Google Scholar]
  15. Henzler Wildman Katherine A., Lee Dong-Kuk, Ramamoorthy A. Mechanism of lipid bilayer disruption by the human antimicrobial peptide, LL-37. Biochemistry. 2003 Jun 3;42(21):6545–6558. doi: 10.1021/bi0273563. [DOI] [PubMed] [Google Scholar]
  16. Kim D. H., Lee D. G., Kim K. L., Lee Y. Internalization of tenecin 3 by a fungal cellular process is essential for its fungicidal effect on Candida albicans. Eur J Biochem. 2001 Aug;268(16):4449–4458. doi: 10.1046/j.1432-1327.2001.02364.x. [DOI] [PubMed] [Google Scholar]
  17. Koshlukova S. E., Araujo M. W., Baev D., Edgerton M. Released ATP is an extracellular cytotoxic mediator in salivary histatin 5-induced killing of Candida albicans. Infect Immun. 2000 Dec;68(12):6848–6856. doi: 10.1128/iai.68.12.6848-6856.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Koshlukova S. E., Lloyd T. L., Araujo M. W., Edgerton M. Salivary histatin 5 induces non-lytic release of ATP from Candida albicans leading to cell death. J Biol Chem. 1999 Jul 2;274(27):18872–18879. doi: 10.1074/jbc.274.27.18872. [DOI] [PubMed] [Google Scholar]
  19. Kraayenhof R., Sterk G. J., Sang H. W. Probing biomembrane interfacial potential and pH profiles with a new type of float-like fluorophores positioned at varying distance from the membrane surface. Biochemistry. 1993 Sep 28;32(38):10057–10066. doi: 10.1021/bi00089a022. [DOI] [PubMed] [Google Scholar]
  20. Ladokhin A. S., Selsted M. E., White S. H. Sizing membrane pores in lipid vesicles by leakage of co-encapsulated markers: pore formation by melittin. Biophys J. 1997 Apr;72(4):1762–1766. doi: 10.1016/S0006-3495(97)78822-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lee D. G., Kim D. H., Park Y., Kim H. K., Kim H. N., Shin Y. K., Choi C. H., Hahm K. S. Fungicidal effect of antimicrobial peptide, PMAP-23, isolated from porcine myeloid against Candida albicans. Biochem Biophys Res Commun. 2001 Mar 30;282(2):570–574. doi: 10.1006/bbrc.2001.4602. [DOI] [PubMed] [Google Scholar]
  22. Lee Dong Gun, Kim Pyoung Il, Park Yoonkyung, Park Seong-Cheol, Woo Eun-Rhan, Hahm Kyung-Soo. Antifungal mechanism of SMAP-29 (1-18) isolated from sheep myeloid mRNA against Trichosporon beigelii. Biochem Biophys Res Commun. 2002 Jul 19;295(3):591–596. doi: 10.1016/s0006-291x(02)00717-9. [DOI] [PubMed] [Google Scholar]
  23. Li Xuewei S., Reddy Molakala S., Baev Didi, Edgerton Mira. Candida albicans Ssa1/2p is the cell envelope binding protein for human salivary histatin 5. J Biol Chem. 2003 May 21;278(31):28553–28561. doi: 10.1074/jbc.M300680200. [DOI] [PubMed] [Google Scholar]
  24. Lindgren M., Hällbrink M., Prochiantz A., Langel U. Cell-penetrating peptides. Trends Pharmacol Sci. 2000 Mar;21(3):99–103. doi: 10.1016/s0165-6147(00)01447-4. [DOI] [PubMed] [Google Scholar]
  25. Lupetti Antonella, Paulusma-Annema Akke, Senesi Sonia, Campa Mario, Van Dissel Jaap T., Nibbering Peter H. Internal thiols and reactive oxygen species in candidacidal activity exerted by an N-terminal peptide of human lactoferrin. Antimicrob Agents Chemother. 2002 Jun;46(6):1634–1639. doi: 10.1128/AAC.46.6.1634-1639.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. MacDonald R. C., MacDonald R. I., Menco B. P., Takeshita K., Subbarao N. K., Hu L. R. Small-volume extrusion apparatus for preparation of large, unilamellar vesicles. Biochim Biophys Acta. 1991 Jan 30;1061(2):297–303. doi: 10.1016/0005-2736(91)90295-j. [DOI] [PubMed] [Google Scholar]
  27. MacKay B. J., Denepitiya L., Iacono V. J., Krost S. B., Pollock J. J. Growth-inhibitory and bactericidal effects of human parotid salivary histidine-rich polypeptides on Streptococcus mutans. Infect Immun. 1984 Jun;44(3):695–701. doi: 10.1128/iai.44.3.695-701.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Matsuzaki K., Sugishita K., Fujii N., Miyajima K. Molecular basis for membrane selectivity of an antimicrobial peptide, magainin 2. Biochemistry. 1995 Mar 14;34(10):3423–3429. doi: 10.1021/bi00010a034. [DOI] [PubMed] [Google Scholar]
  29. Matsuzaki K. Why and how are peptide-lipid interactions utilized for self-defense? Magainins and tachyplesins as archetypes. Biochim Biophys Acta. 1999 Dec 15;1462(1-2):1–10. doi: 10.1016/s0005-2736(99)00197-2. [DOI] [PubMed] [Google Scholar]
  30. Matsuzaki K., Yoneyama S., Fujii N., Miyajima K., Yamada K., Kirino Y., Anzai K. Membrane permeabilization mechanisms of a cyclic antimicrobial peptide, tachyplesin I, and its linear analog. Biochemistry. 1997 Aug 12;36(32):9799–9806. doi: 10.1021/bi970588v. [DOI] [PubMed] [Google Scholar]
  31. Mitchell D. J., Kim D. T., Steinman L., Fathman C. G., Rothbard J. B. Polyarginine enters cells more efficiently than other polycationic homopolymers. J Pept Res. 2000 Nov;56(5):318–325. doi: 10.1034/j.1399-3011.2000.00723.x. [DOI] [PubMed] [Google Scholar]
  32. Oren Z., Lerman J. C., Gudmundsson G. H., Agerberth B., Shai Y. Structure and organization of the human antimicrobial peptide LL-37 in phospholipid membranes: relevance to the molecular basis for its non-cell-selective activity. Biochem J. 1999 Aug 1;341(Pt 3):501–513. [PMC free article] [PubMed] [Google Scholar]
  33. Penefsky H. S. A centrifuged-column procedure for the measurement of ligand binding by beef heart F1. Methods Enzymol. 1979;56:527–530. doi: 10.1016/0076-6879(79)56050-9. [DOI] [PubMed] [Google Scholar]
  34. Piers K. L., Brown M. H., Hancock R. E. Improvement of outer membrane-permeabilizing and lipopolysaccharide-binding activities of an antimicrobial cationic peptide by C-terminal modification. Antimicrob Agents Chemother. 1994 Oct;38(10):2311–2316. doi: 10.1128/aac.38.10.2311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Rex S., Schwarz G. Quantitative studies on the melittin-induced leakage mechanism of lipid vesicles. Biochemistry. 1998 Feb 24;37(8):2336–2345. doi: 10.1021/bi971009p. [DOI] [PubMed] [Google Scholar]
  36. Richard Jean Philippe, Melikov Kamran, Vives Eric, Ramos Corinne, Verbeure Birgit, Gait Mike J., Chernomordik Leonid V., Lebleu Bernard. Cell-penetrating peptides. A reevaluation of the mechanism of cellular uptake. J Biol Chem. 2002 Oct 30;278(1):585–590. doi: 10.1074/jbc.M209548200. [DOI] [PubMed] [Google Scholar]
  37. Rinaldi Andrea C., Mangoni Maria Luisa, Rufo Anna, Luzi Carla, Barra Donatella, Zhao Hongxia, Kinnunen Paavo K. J., Bozzi Argante, Di Giulio Antonio, Simmaco Maurizio. Temporin L: antimicrobial, haemolytic and cytotoxic activities, and effects on membrane permeabilization in lipid vesicles. Biochem J. 2002 Nov 15;368(Pt 1):91–100. doi: 10.1042/BJ20020806. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Rothstein D. M., Spacciapoli P., Tran L. T., Xu T., Roberts F. D., Dalla Serra M., Buxton D. K., Oppenheim F. G., Friden P. Anticandida activity is retained in P-113, a 12-amino-acid fragment of histatin 5. Antimicrob Agents Chemother. 2001 May;45(5):1367–1373. doi: 10.1128/AAC.45.5.1367-1373.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Ruissen A. L. A., Groenink J., Van't Hof W., Walgreen-Weterings E., van Marle J., van Veen H. A., Voorhout W. F., Veerman E. C. I., Nieuw Amerongen A. V. Histatin 5 and derivatives. Their localization and effects on the ultra-structural level. Peptides. 2002 Aug;23(8):1391–1399. doi: 10.1016/s0196-9781(02)00076-1. [DOI] [PubMed] [Google Scholar]
  40. Ruissen A. L., Groenink J., Helmerhorst E. J., Walgreen-Weterings E., Van't Hof W., Veerman E. C., Nieuw Amerongen A. V. Effects of histatin 5 and derived peptides on Candida albicans. Biochem J. 2001 Jun 1;356(Pt 2):361–368. doi: 10.1042/0264-6021:3560361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Ruissen Anita L. A., Groenink Jasper, Krijtenberg Patricia, Walgreen-Weterings Els, van 't Hof Wim, Veerman Enno C. I., Nieuw Amerongen Arie V. Internalisation and degradation of histatin 5 by Candida albicans. Biol Chem. 2003 Jan;384(1):183–190. doi: 10.1515/BC.2003.020. [DOI] [PubMed] [Google Scholar]
  42. Sajjan U. S., Tran L. T., Sole N., Rovaldi C., Akiyama A., Friden P. M., Forstner J. F., Rothstein D. M. P-113D, an antimicrobial peptide active against Pseudomonas aeruginosa, retains activity in the presence of sputum from cystic fibrosis patients. Antimicrob Agents Chemother. 2001 Dec;45(12):3437–3444. doi: 10.1128/AAC.45.12.3437-3444.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Shai Yechiel. Mode of action of membrane active antimicrobial peptides. Biopolymers. 2002;66(4):236–248. doi: 10.1002/bip.10260. [DOI] [PubMed] [Google Scholar]
  44. Suzuki Tomoki, Futaki Shiroh, Niwa Miki, Tanaka Seigo, Ueda Kunihiro, Sugiura Yukio. Possible existence of common internalization mechanisms among arginine-rich peptides. J Biol Chem. 2001 Nov 15;277(4):2437–2443. doi: 10.1074/jbc.M110017200. [DOI] [PubMed] [Google Scholar]
  45. Vogt B., Ducarme P., Schinzel S., Brasseur R., Bechinger B. The topology of lysine-containing amphipathic peptides in bilayers by circular dichroism, solid-state NMR, and molecular modeling. Biophys J. 2000 Nov;79(5):2644–2656. doi: 10.1016/S0006-3495(00)76503-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Wu M., Maier E., Benz R., Hancock R. E. Mechanism of interaction of different classes of cationic antimicrobial peptides with planar bilayers and with the cytoplasmic membrane of Escherichia coli. Biochemistry. 1999 Jun 1;38(22):7235–7242. doi: 10.1021/bi9826299. [DOI] [PubMed] [Google Scholar]
  47. Xu Y., Ambudkar I., Yamagishi H., Swaim W., Walsh T. J., O'Connell B. C. Histatin 3-mediated killing of Candida albicans: effect of extracellular salt concentration on binding and internalization. Antimicrob Agents Chemother. 1999 Sep;43(9):2256–2262. doi: 10.1128/aac.43.9.2256. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. de Kroon A. I., de Gier J., de Kruijff B. The effect of a membrane potential on the interaction of mastoparan X, a mitochondrial presequence, and several regulatory peptides with phospholipid vesicles. Biochim Biophys Acta. 1991 Sep 30;1068(2):111–124. doi: 10.1016/0005-2736(91)90199-i. [DOI] [PubMed] [Google Scholar]
  49. van 't Hof W., Veerman E. C., Helmerhorst E. J., Amerongen A. V. Antimicrobial peptides: properties and applicability. Biol Chem. 2001 Apr;382(4):597–619. doi: 10.1515/BC.2001.072. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES