Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 May 1;379(Pt 3):749–756. doi: 10.1042/BJ20031784

Transforming growth factor (TGF)beta, fibroblast growth factor (FGF) and retinoid signalling pathways promote pancreatic exocrine gene expression in mouse embryonic stem cells.

Anouchka Skoudy 1, Meritxell Rovira 1, Pierre Savatier 1, Franz Martin 1, Trinidad León-Quinto 1, Bernat Soria 1, Francisco X Real 1
PMCID: PMC1224110  PMID: 14733613

Abstract

Extracellular signalling cues play a major role in the activation of differentiation programmes. Mouse embryonic stem (ES) cells are pluripotent and can differentiate into a wide variety of specialized cells. Recently, protocols designed to induce endocrine pancreatic differentiation in vitro have been designed but little information is currently available concerning the potential of ES cells to differentiate into acinar pancreatic cells. By using conditioned media of cultured foetal pancreatic rudiments, we demonstrate that ES cells can respond in vitro to signalling pathways involved in exocrine development and differentiation. In particular, modulation of the hedgehog, transforming growth factor beta, retinoid, and fibroblast growth factor pathways in ES cell-derived embryoid bodies (EB) resulted in increased levels of transcripts encoding pancreatic transcription factors and cytodifferentiation markers, as demonstrated by RT-PCR. In EB undergoing spontaneous differentiation, expression of the majority of the acinar genes (i.e. amylase, carboxypeptidase A and elastase) was induced after the expression of endocrine genes, as occurs in vivo during development. These data indicate that ES cells can undergo exocrine pancreatic differentiation with a kinetic pattern of expression reminiscent of pancreas development in vivo and that ES cells can be coaxed to express an acinar phenotype by activation of signalling pathways known to play a role in pancreatic development and differentiation.

Full Text

The Full Text of this article is available as a PDF (283.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adell T., Gómez-Cuadrado A., Skoudy A., Pettengill O. S., Longnecker D. S., Real F. X. Role of the basic helix-loop-helix transcription factor p48 in the differentiation phenotype of exocrine pancreas cancer cells. Cell Growth Differ. 2000 Mar;11(3):137–147. [PubMed] [Google Scholar]
  2. Assady S., Maor G., Amit M., Itskovitz-Eldor J., Skorecki K. L., Tzukerman M. Insulin production by human embryonic stem cells. Diabetes. 2001 Aug;50(8):1691–1697. doi: 10.2337/diabetes.50.8.1691. [DOI] [PubMed] [Google Scholar]
  3. Blyszczuk Przemyslaw, Czyz Jaroslaw, Kania Gabriela, Wagner Martin, Roll Ursula, St-Onge Luc, Wobus Anna M. Expression of Pax4 in embryonic stem cells promotes differentiation of nestin-positive progenitor and insulin-producing cells. Proc Natl Acad Sci U S A. 2003 Jan 13;100(3):998–1003. doi: 10.1073/pnas.0237371100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bradley A. Embryonic stem cells: proliferation and differentiation. Curr Opin Cell Biol. 1990 Dec;2(6):1013–1017. doi: 10.1016/0955-0674(90)90150-d. [DOI] [PubMed] [Google Scholar]
  5. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  6. Edlund Helena. Pancreatic organogenesis--developmental mechanisms and implications for therapy. Nat Rev Genet. 2002 Jul;3(7):524–532. doi: 10.1038/nrg841. [DOI] [PubMed] [Google Scholar]
  7. Eiges Rachel, Benvenisty Nissim. A molecular view on pluripotent stem cells. FEBS Lett. 2002 Oct 2;529(1):135–141. doi: 10.1016/s0014-5793(02)03191-5. [DOI] [PubMed] [Google Scholar]
  8. Elghazi Lynda, Cras-Méneur Corentin, Czernichow Paul, Scharfmann Raphael. Role for FGFR2IIIb-mediated signals in controlling pancreatic endocrine progenitor cell proliferation. Proc Natl Acad Sci U S A. 2002 Mar 12;99(6):3884–3889. doi: 10.1073/pnas.062321799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fuchs E., Segre J. A. Stem cells: a new lease on life. Cell. 2000 Jan 7;100(1):143–155. doi: 10.1016/s0092-8674(00)81691-8. [DOI] [PubMed] [Google Scholar]
  10. Gauthier K., Chassande O., Plateroti M., Roux J. P., Legrand C., Pain B., Rousset B., Weiss R., Trouillas J., Samarut J. Different functions for the thyroid hormone receptors TRalpha and TRbeta in the control of thyroid hormone production and post-natal development. EMBO J. 1999 Feb 1;18(3):623–631. doi: 10.1093/emboj/18.3.623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gittes G. K., Rutter W. J. Onset of cell-specific gene expression in the developing mouse pancreas. Proc Natl Acad Sci U S A. 1992 Feb 1;89(3):1128–1132. doi: 10.1073/pnas.89.3.1128. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gradwohl G., Dierich A., LeMeur M., Guillemot F. neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas. Proc Natl Acad Sci U S A. 2000 Feb 15;97(4):1607–1611. doi: 10.1073/pnas.97.4.1607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gu Guoqiang, Dubauskaite Jolanta, Melton Douglas A. Direct evidence for the pancreatic lineage: NGN3+ cells are islet progenitors and are distinct from duct progenitors. Development. 2002 May;129(10):2447–2457. doi: 10.1242/dev.129.10.2447. [DOI] [PubMed] [Google Scholar]
  14. Hebrok M., Kim S. K., Melton D. A. Notochord repression of endodermal Sonic hedgehog permits pancreas development. Genes Dev. 1998 Jun 1;12(11):1705–1713. doi: 10.1101/gad.12.11.1705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hebrok M., Kim S. K., St Jacques B., McMahon A. P., Melton D. A. Regulation of pancreas development by hedgehog signaling. Development. 2000 Nov;127(22):4905–4913. doi: 10.1242/dev.127.22.4905. [DOI] [PubMed] [Google Scholar]
  16. Horb Marko E., Shen Chia Ning, Tosh David, Slack Jonathan M. W. Experimental conversion of liver to pancreas. Curr Biol. 2003 Jan 21;13(2):105–115. doi: 10.1016/s0960-9822(02)01434-3. [DOI] [PubMed] [Google Scholar]
  17. Hori Yuichi, Rulifson Ingrid C., Tsai Bernette C., Heit Jeremy J., Cahoy John D., Kim Seung K. Growth inhibitors promote differentiation of insulin-producing tissue from embryonic stem cells. Proc Natl Acad Sci U S A. 2002 Nov 19;99(25):16105–16110. doi: 10.1073/pnas.252618999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Huang H. P., Liu M., El-Hodiri H. M., Chu K., Jamrich M., Tsai M. J. Regulation of the pancreatic islet-specific gene BETA2 (neuroD) by neurogenin 3. Mol Cell Biol. 2000 May;20(9):3292–3307. doi: 10.1128/mcb.20.9.3292-3307.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Johansson K. A., Grapin-Botton Anne. Development and diseases of the pancreas. Clin Genet. 2002 Jul;62(1):14–23. doi: 10.1034/j.1399-0004.2002.620102.x. [DOI] [PubMed] [Google Scholar]
  20. Jonsson J., Carlsson L., Edlund T., Edlund H. Insulin-promoter-factor 1 is required for pancreas development in mice. Nature. 1994 Oct 13;371(6498):606–609. doi: 10.1038/371606a0. [DOI] [PubMed] [Google Scholar]
  21. Kadison A., Kim J., Maldonado T., Crisera C., Prasadan K., Manna P., Preuett B., Hembree M., Longaker M., Gittes G. Retinoid signaling directs secondary lineage selection in pancreatic organogenesis. J Pediatr Surg. 2001 Aug;36(8):1150–1156. doi: 10.1053/jpsu.2001.25734. [DOI] [PubMed] [Google Scholar]
  22. Kahan Brenda W., Jacobson Lynn M., Hullett Debra A., Ochoada Jaime M., Oberley Terry D., Lang Katharine M., Odorico Jon S. Pancreatic precursors and differentiated islet cell types from murine embryonic stem cells: an in vitro model to study islet differentiation. Diabetes. 2003 Aug;52(8):2016–2024. doi: 10.2337/diabetes.52.8.2016. [DOI] [PubMed] [Google Scholar]
  23. Kawaguchi Yoshiya, Cooper Bonnie, Gannon Maureen, Ray Michael, MacDonald Raymond J., Wright Christopher V. E. The role of the transcriptional regulator Ptf1a in converting intestinal to pancreatic progenitors. Nat Genet. 2002 Aug 19;32(1):128–134. doi: 10.1038/ng959. [DOI] [PubMed] [Google Scholar]
  24. Kawahira Hiroshi, Ma Nancy H., Tzanakakis Emmanouhl S., McMahon Andrew P., Chuang Pao-Tien, Hebrok Matthias. Combined activities of hedgehog signaling inhibitors regulate pancreas development. Development. 2003 Aug 13;130(20):4871–4879. doi: 10.1242/dev.00653. [DOI] [PubMed] [Google Scholar]
  25. Kim S. K., Hebrok M. Intercellular signals regulating pancreas development and function. Genes Dev. 2001 Jan 15;15(2):111–127. doi: 10.1101/gad.859401. [DOI] [PubMed] [Google Scholar]
  26. Kim S. K., Hebrok M., Li E., Oh S. P., Schrewe H., Harmon E. B., Lee J. S., Melton D. A. Activin receptor patterning of foregut organogenesis. Genes Dev. 2000 Aug 1;14(15):1866–1871. [PMC free article] [PubMed] [Google Scholar]
  27. Kim S. K., Melton D. A. Pancreas development is promoted by cyclopamine, a hedgehog signaling inhibitor. Proc Natl Acad Sci U S A. 1998 Oct 27;95(22):13036–13041. doi: 10.1073/pnas.95.22.13036. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Kim Seung K., MacDonald Raymond J. Signaling and transcriptional control of pancreatic organogenesis. Curr Opin Genet Dev. 2002 Oct;12(5):540–547. doi: 10.1016/s0959-437x(02)00338-6. [DOI] [PubMed] [Google Scholar]
  29. Kobayashi Hiroyuki, Spilde Troy L., Bhatia Amina M., Buckingham R. Brendhan, Hembree Mark J., Prasadan Krishna, Preuett Barry L., Imamura Masayuki, Gittes George K. Retinoid signaling controls mouse pancreatic exocrine lineage selection through epithelial-mesenchymal interactions. Gastroenterology. 2002 Oct;123(4):1331–1340. doi: 10.1053/gast.2002.35949. [DOI] [PubMed] [Google Scholar]
  30. Krapp A., Knöfler M., Ledermann B., Bürki K., Berney C., Zoerkler N., Hagenbüchle O., Wellauer P. K. The bHLH protein PTF1-p48 is essential for the formation of the exocrine and the correct spatial organization of the endocrine pancreas. Genes Dev. 1998 Dec 1;12(23):3752–3763. doi: 10.1101/gad.12.23.3752. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Kumar Maya, Jordan Nathalie, Melton Doug, Grapin-Botton Anne. Signals from lateral plate mesoderm instruct endoderm toward a pancreatic fate. Dev Biol. 2003 Jul 1;259(1):109–122. doi: 10.1016/s0012-1606(03)00183-0. [DOI] [PubMed] [Google Scholar]
  32. Kumar Maya, Melton Doug. Pancreas specification: a budding question. Curr Opin Genet Dev. 2003 Aug;13(4):401–407. doi: 10.1016/s0959-437x(03)00089-3. [DOI] [PubMed] [Google Scholar]
  33. Levinson-Dushnik M., Benvenisty N. Involvement of hepatocyte nuclear factor 3 in endoderm differentiation of embryonic stem cells. Mol Cell Biol. 1997 Jul;17(7):3817–3822. doi: 10.1128/mcb.17.7.3817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Lumelsky N., Blondel O., Laeng P., Velasco I., Ravin R., McKay R. Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science. 2001 Apr 26;292(5520):1389–1394. doi: 10.1126/science.1058866. [DOI] [PubMed] [Google Scholar]
  35. Mashima H., Ohnishi H., Wakabayashi K., Mine T., Miyagawa J., Hanafusa T., Seno M., Yamada H., Kojima I. Betacellulin and activin A coordinately convert amylase-secreting pancreatic AR42J cells into insulin-secreting cells. J Clin Invest. 1996 Apr 1;97(7):1647–1654. doi: 10.1172/JCI118591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Maye P., Becker S., Kasameyer E., Byrd N., Grabel L. Indian hedgehog signaling in extraembryonic endoderm and ectoderm differentiation in ES embryoid bodies. Mech Dev. 2000 Jun;94(1-2):117–132. doi: 10.1016/s0925-4773(00)00304-x. [DOI] [PubMed] [Google Scholar]
  37. Miralles F., Czernichow P., Ozaki K., Itoh N., Scharfmann R. Signaling through fibroblast growth factor receptor 2b plays a key role in the development of the exocrine pancreas. Proc Natl Acad Sci U S A. 1999 May 25;96(11):6267–6272. doi: 10.1073/pnas.96.11.6267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Miralles F., Czernichow P., Scharfmann R. Follistatin regulates the relative proportions of endocrine versus exocrine tissue during pancreatic development. Development. 1998 Mar;125(6):1017–1024. doi: 10.1242/dev.125.6.1017. [DOI] [PubMed] [Google Scholar]
  39. Moritoh Yusuke, Yamato Eiji, Yasui Yumiko, Miyazaki Satsuki, Miyazaki Jun-ichi. Analysis of insulin-producing cells during in vitro differentiation from feeder-free embryonic stem cells. Diabetes. 2003 May;52(5):1163–1168. doi: 10.2337/diabetes.52.5.1163. [DOI] [PubMed] [Google Scholar]
  40. Offield M. F., Jetton T. L., Labosky P. A., Ray M., Stein R. W., Magnuson M. A., Hogan B. L., Wright C. V. PDX-1 is required for pancreatic outgrowth and differentiation of the rostral duodenum. Development. 1996 Mar;122(3):983–995. doi: 10.1242/dev.122.3.983. [DOI] [PubMed] [Google Scholar]
  41. Percival A. C., Slack J. M. Analysis of pancreatic development using a cell lineage label. Exp Cell Res. 1999 Feb 25;247(1):123–132. doi: 10.1006/excr.1998.4322. [DOI] [PubMed] [Google Scholar]
  42. Pin C. L., Rukstalis J. M., Johnson C., Konieczny S. F. The bHLH transcription factor Mist1 is required to maintain exocrine pancreas cell organization and acinar cell identity. J Cell Biol. 2001 Nov 5;155(4):519–530. doi: 10.1083/jcb.200105060. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Rajagopal Jayaraj, Anderson William J., Kume Shoen, Martinez Olga I., Melton Douglas A. Insulin staining of ES cell progeny from insulin uptake. Science. 2003 Jan 17;299(5605):363–363. doi: 10.1126/science.1077838. [DOI] [PubMed] [Google Scholar]
  44. Rathjen J., Rathjen P. D. Mouse ES cells: experimental exploitation of pluripotent differentiation potential. Curr Opin Genet Dev. 2001 Oct;11(5):587–594. doi: 10.1016/s0959-437x(00)00237-9. [DOI] [PubMed] [Google Scholar]
  45. Rose S. D., Swift G. H., Peyton M. J., Hammer R. E., MacDonald R. J. The role of PTF1-P48 in pancreatic acinar gene expression. J Biol Chem. 2001 Sep 18;276(47):44018–44026. doi: 10.1074/jbc.M106264200. [DOI] [PubMed] [Google Scholar]
  46. Shiozaki S., Tajima T., Zhang Y. Q., Furukawa M., Nakazato Y., Kojima I. Impaired differentiation of endocrine and exocrine cells of the pancreas in transgenic mouse expressing the truncated type II activin receptor. Biochim Biophys Acta. 1999 May 6;1450(1):1–11. doi: 10.1016/s0167-4889(99)00022-1. [DOI] [PubMed] [Google Scholar]
  47. Slack J. M. Developmental biology of the pancreas. Development. 1995 Jun;121(6):1569–1580. doi: 10.1242/dev.121.6.1569. [DOI] [PubMed] [Google Scholar]
  48. Smith S. B., Ee H. C., Conners J. R., German M. S. Paired-homeodomain transcription factor PAX4 acts as a transcriptional repressor in early pancreatic development. Mol Cell Biol. 1999 Dec;19(12):8272–8280. doi: 10.1128/mcb.19.12.8272. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Soria B., Roche E., Berná G., León-Quinto T., Reig J. A., Martín F. Insulin-secreting cells derived from embryonic stem cells normalize glycemia in streptozotocin-induced diabetic mice. Diabetes. 2000 Feb;49(2):157–162. doi: 10.2337/diabetes.49.2.157. [DOI] [PubMed] [Google Scholar]
  50. Soria B., Skoudy A., Martín F. From stem cells to beta cells: new strategies in cell therapy of diabetes mellitus. Diabetologia. 2001 Apr;44(4):407–415. doi: 10.1007/s001250051636. [DOI] [PubMed] [Google Scholar]
  51. St-Onge L., Wehr R., Gruss P. Pancreas development and diabetes. Curr Opin Genet Dev. 1999 Jun;9(3):295–300. doi: 10.1016/s0959-437x(99)80044-6. [DOI] [PubMed] [Google Scholar]
  52. Vila M. R., Lloreta J., Real F. X. Normal human pancreas cultures display functional ductal characteristics. Lab Invest. 1994 Sep;71(3):423–431. [PubMed] [Google Scholar]
  53. Wiles M. V., Johansson B. M. Embryonic stem cell development in a chemically defined medium. Exp Cell Res. 1999 Feb 25;247(1):241–248. doi: 10.1006/excr.1998.4353. [DOI] [PubMed] [Google Scholar]
  54. Yamaoka T., Idehara C., Yano M., Matsushita T., Yamada T., Ii S., Moritani M., Hata J., Sugino H., Noji S. Hypoplasia of pancreatic islets in transgenic mice expressing activin receptor mutants. J Clin Invest. 1998 Jul 15;102(2):294–301. doi: 10.1172/JCI2769. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES