Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 May 1;379(Pt 3):601–607. doi: 10.1042/BJ20031489

Identification and characterization of plant glycerophosphodiester phosphodiesterase.

Benoît Van Der Rest 1, Norbert Rolland 1, Anne-Marie Boisson 1, Myriam Ferro 1, Richard Bligny 1, Roland Douce 1
PMCID: PMC1224124  PMID: 14750903

Abstract

GPX-PDE (glycerophosphodiester phosphodiesterase; EC 3.1.4.46) is a relatively poorly characterized enzyme that catalyses the hydrolysis of various glycerophosphodiesters (glycerophosphocholine, glycerophosphoethanolamine, glycerophosphoglycerol, glycerophosphoserine and bis-glycerophosphoglycerol), releasing sn-glycerol 3-phosphate and the corresponding alcohol. In a previous study, we demonstrated the existence of a novel GPX-PDE in the cell walls and vacuoles of plant cells. Since no GPX-PDE had been identified in any plant organism, the purification of GPX-PDE from carrot cell walls was attempted. After extraction of cell wall proteins from carrot cell suspension cultures with CaCl2, GPX-PDE was purified up to 2700-fold using, successively, ammonium sulphate precipitation, gel filtration and concanavalin A-Sepharose. Internal sequence analysis of a 55 kDa protein identified in the extract following 2700-fold purification revealed strong similarity to the primary sequence of GLPQ, a bacterial GPX-PDE. To confirm the identity of plant GPX-PDE, an Arabidopsis thaliana cDNA similar to that encoding the bacterial GPX-PDE was cloned and overexpressed in a bacterial expression system, and was used to raise antibodies against the putative Arabidopsis thaliana GPX-PDE. Immunochemical assays performed on carrot cell wall proteins extracted by CaCl2 treatment showed a strong correlation between GPX-PDE activity and detection of the 55 kDa protein, validating the identity of the plant GPX-PDE. Finally, various properties of the purified enzyme were investigated. GPX-PDE is a multimeric enzyme, specific for glycerophosphodiesters, exhibiting a K(m) of 36 microM for glycerophosphocholine and active within a wide pH range (from 4 to 10). Since these properties are similar to those of GLPQ, the bacterial GPX-PDE, the similarities between plant and bacterial enzymes are also discussed.

Full Text

The Full Text of this article is available as a PDF (189.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abel S., Nürnberger T., Ahnert V., Krauss G. J., Glund K. Induction of an extracellular cyclic nucleotide phosphodiesterase as an accessory ribonucleolytic activity during phosphate starvation of cultured tomato cells. Plant Physiol. 2000 Feb;122(2):543–552. doi: 10.1104/pp.122.2.543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Antelmann H., Scharf C., Hecker M. Phosphate starvation-inducible proteins of Bacillus subtilis: proteomics and transcriptional analysis. J Bacteriol. 2000 Aug;182(16):4478–4490. doi: 10.1128/jb.182.16.4478-4490.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bauernschmitt H. G., Kinne R. K. Metabolism of the 'organic osmolyte' glycerophosphorylcholine in isolated rat inner medullary collecting duct cells. I. Pathways for synthesis and degradation. Biochim Biophys Acta. 1993 Jun 5;1148(2):331–341. doi: 10.1016/0005-2736(93)90147-r. [DOI] [PubMed] [Google Scholar]
  4. Billadello J. J., Gard J. K., Ackerman J. J., Gross R. W. Determination of intact-tissue glycerophosphorylcholine levels by quantitative 31P nuclear magnetic resonance spectroscopy and correlation with spectrophotometric quantification. Anal Biochem. 1985 Jan;144(1):269–274. doi: 10.1016/0003-2697(85)90116-2. [DOI] [PubMed] [Google Scholar]
  5. Borner Georg H. H., Lilley Kathryn S., Stevens Timothy J., Dupree Paul. Identification of glycosylphosphatidylinositol-anchored proteins in Arabidopsis. A proteomic and genomic analysis. Plant Physiol. 2003 May 1;132(2):568–577. doi: 10.1104/pp.103.021170. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Borner Georg H. H., Sherrier D. Janine, Stevens Timothy J., Arkin Isaiah T., Dupree Paul. Prediction of glycosylphosphatidylinositol-anchored proteins in Arabidopsis. A genomic analysis. Plant Physiol. 2002 Jun;129(2):486–499. doi: 10.1104/pp.010884. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  8. DAWSON R. M. Liver glycerylphosphorylcholine diesterase. Biochem J. 1956 Apr;62(4):689–693. doi: 10.1042/bj0620689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Emanuelsson O., Nielsen H., Brunak S., von Heijne G. Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol. 2000 Jul 21;300(4):1005–1016. doi: 10.1006/jmbi.2000.3903. [DOI] [PubMed] [Google Scholar]
  10. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  11. Larson T. J., Ehrmann M., Boos W. Periplasmic glycerophosphodiester phosphodiesterase of Escherichia coli, a new enzyme of the glp regulon. J Biol Chem. 1983 May 10;258(9):5428–5432. [PubMed] [Google Scholar]
  12. Larson T. J., van Loo-Bhattacharya A. T. Purification and characterization of glpQ-encoded glycerophosphodiester phosphodiesterase from Escherichia coli K-12. Arch Biochem Biophys. 1988 Feb 1;260(2):577–584. doi: 10.1016/0003-9861(88)90484-5. [DOI] [PubMed] [Google Scholar]
  13. Lloyd-Davies K. A., Michell R. H., Coleman R. Glycerylphosphorylcholine phosphodiesterase in rat liver. Subcellular distribution and localization in plasma membranes. Biochem J. 1972 Apr;127(2):357–368. doi: 10.1042/bj1270357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Mitra J., Chowdhury M. Purification and characterization of rat uterine glycerylphosphorylcholine diesterase and its tissue-specific induction by 17 beta-estradiol. Endocrinology. 1991 Sep;129(3):1147–1154. doi: 10.1210/endo-129-3-1147. [DOI] [PubMed] [Google Scholar]
  15. Munson R. S., Jr, Sasaki K. Protein D, a putative immunoglobulin D-binding protein produced by Haemophilus influenzae, is glycerophosphodiester phosphodiesterase. J Bacteriol. 1993 Jul;175(14):4569–4571. doi: 10.1128/jb.175.14.4569-4571.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Nakai K., Kanehisa M. A knowledge base for predicting protein localization sites in eukaryotic cells. Genomics. 1992 Dec;14(4):897–911. doi: 10.1016/S0888-7543(05)80111-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Nielsen H., Engelbrecht J., Brunak S., von Heijne G. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng. 1997 Jan;10(1):1–6. doi: 10.1093/protein/10.1.1. [DOI] [PubMed] [Google Scholar]
  18. Olczak M., Kobiałka M., Watorek W. Characterization of diphosphonucleotide phosphatase/phosphodiesterase from yellow lupin (Lupinus luteus) seeds. Biochim Biophys Acta. 2000 May 23;1478(2):239–247. doi: 10.1016/s0167-4838(00)00024-8. [DOI] [PubMed] [Google Scholar]
  19. Paltauf F., Zinser E., Daum G. Utilization of exogenous glycerophosphodiesters and glycerol 3-phosphate by inositol-starved yeast, Saccharomyces uvarum. Biochim Biophys Acta. 1985 Jul 9;835(2):322–330. doi: 10.1016/0005-2760(85)90288-7. [DOI] [PubMed] [Google Scholar]
  20. Patton J. L., Pessoa-Brandao L., Henry S. A. Production and reutilization of an extracellular phosphatidylinositol catabolite, glycerophosphoinositol, by Saccharomyces cerevisiae. J Bacteriol. 1995 Jun;177(12):3379–3385. doi: 10.1128/jb.177.12.3379-3385.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Robertson D., Mitchell G. P., Gilroy J. S., Gerrish C., Bolwell G. P., Slabas A. R. Differential extraction and protein sequencing reveals major differences in patterns of primary cell wall proteins from plants. J Biol Chem. 1997 Jun 20;272(25):15841–15848. doi: 10.1074/jbc.272.25.15841. [DOI] [PubMed] [Google Scholar]
  22. Rodriguez-López M., Baroja-Fernández E., Zandueta-Criado A., Pozueta-Romero J. Adenosine diphosphate glucose pyrophosphatase: A plastidial phosphodiesterase that prevents starch biosynthesis. Proc Natl Acad Sci U S A. 2000 Jul 18;97(15):8705–8710. doi: 10.1073/pnas.120168097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Rodríguez-López M., Baroja-Fernández E., Zandueta-Criado A., Moreno-Bruna B., Muñoz F. J., Akazawa T., Pozueta-Romero J. Two isoforms of a nucleotide-sugar pyrophosphatase/phosphodiesterase from barley leaves (Hordeum vulgare L.) are distinct oligomers of HvGLP1, a germin-like protein. FEBS Lett. 2001 Feb 9;490(1-2):44–48. doi: 10.1016/s0014-5793(01)02135-4. [DOI] [PubMed] [Google Scholar]
  24. Sahsah Y., Pham Thi A. T., Roy-Macauley H., d'Arcy-Lameta A., Repellin A., Zuily-Fodil Y. Purification and characterization of a soluble lipolytic acylhydrolase from Cowpea (Vigna unguiculata L.) leaves. Biochim Biophys Acta. 1994 Nov 17;1215(1-2):66–73. doi: 10.1016/0005-2760(94)90092-2. [DOI] [PubMed] [Google Scholar]
  25. Shang E. S., Skare J. T., Erdjument-Bromage H., Blanco D. R., Tempst P., Miller J. N., Lovett M. A. Sequence analysis and characterization of a 40-kilodalton Borrelia hermsii glycerophosphodiester phosphodiesterase homolog. J Bacteriol. 1997 Apr;179(7):2238–2246. doi: 10.1128/jb.179.7.2238-2246.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Spanner S., Ansell G. B. The hydrolysis of glycerophosphocholine by rat brain microsomes: activation and inhibition. Neurochem Res. 1987 Feb;12(2):203–206. doi: 10.1007/BF00979538. [DOI] [PubMed] [Google Scholar]
  27. Tommassen J., Eiglmeier K., Cole S. T., Overduin P., Larson T. J., Boos W. Characterization of two genes, glpQ and ugpQ, encoding glycerophosphoryl diester phosphodiesterases of Escherichia coli. Mol Gen Genet. 1991 Apr;226(1-2):321–327. doi: 10.1007/BF00273621. [DOI] [PubMed] [Google Scholar]
  28. Zablocki K., Miller S. P., Garcia-Perez A., Burg M. B. Accumulation of glycerophosphocholine (GPC) by renal cells: osmotic regulation of GPC:choline phosphodiesterase. Proc Natl Acad Sci U S A. 1991 Sep 1;88(17):7820–7824. doi: 10.1073/pnas.88.17.7820. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Zheng B., Chen D., Farquhar M. G. MIR16, a putative membrane glycerophosphodiester phosphodiesterase, interacts with RGS16. Proc Natl Acad Sci U S A. 2000 Apr 11;97(8):3999–4004. doi: 10.1073/pnas.97.8.3999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Zheng Bin, Berrie Christopher P., Corda Daniela, Farquhar Marilyn G. GDE1/MIR16 is a glycerophosphoinositol phosphodiesterase regulated by stimulation of G protein-coupled receptors. Proc Natl Acad Sci U S A. 2003 Feb 7;100(4):1745–1750. doi: 10.1073/pnas.0337605100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. van der Rest Benoît, Boisson Anne-Marie, Gout Elisabeth, Bligny Richard, Douce Roland. Glycerophosphocholine metabolism in higher plant cells. Evidence of a new glyceryl-phosphodiester phosphodiesterase. Plant Physiol. 2002 Sep;130(1):244–255. doi: 10.1104/pp.003392. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES