Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 May 1;379(Pt 3):849–855. doi: 10.1042/BJ20040035

Putrescine biosynthesis in mammalian tissues.

Catherine S Coleman 1, Guirong Hu 1, Anthony E Pegg 1
PMCID: PMC1224126  PMID: 14763899

Abstract

L-ornithine decarboxylase provides de novo putrescine biosynthesis in mammals. Alternative pathways to generate putrescine that involve ADC (L-arginine decarboxylase) occur in non-mammalian organisms. It has been suggested that an ADC-mediated pathway may generate putrescine via agmatine in mammalian tissues. Published evidence for a mammalian ADC is based on (i) assays using mitochondrial extracts showing production of 14CO2 from [1-14C]arginine and (ii) cloned cDNA sequences that have been claimed to represent ADC. We have reinvestigated this evidence and were unable to find any evidence supporting a mammalian ADC. Mitochondrial extracts prepared from freshly isolated rodent liver and kidney using a metrizamide/Percoll density gradient were assayed for ADC activity using L-[U-14C]-arginine in the presence or absence of arginine metabolic pathway inhibitors. Although 14CO2 was produced in substantial amounts, no labelled agmatine or putrescine was detected. [14C]Agmatine added to liver extracts was not degraded significantly indicating that any agmatine derived from a putative ADC activity was not lost due to further metabolism. Extensive searches of current genome databases using non-mammalian ADC sequences did not identify a viable candidate ADC gene. One of the putative mammalian ADC sequences appears to be derived from bacteria and the other lacks several residues that are essential for decarboxylase activity. These results indicate that 14CO2 release from [1-14C]arginine is not adequate evidence for a mammalian ADC. Although agmatine is a known constituent of mammalian cells, it can be transported from the diet. Therefore L-ornithine decarboxylase remains the only established route for de novo putrescine biosynthesis in mammals.

Full Text

The Full Text of this article is available as a PDF (194.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Babál P., Ruchko M., Campbell C. C., Gilmour S. P., Mitchell J. L., Olson J. W., Gillespie M. N. Regulation of ornithine decarboxylase activity and polyamine transport by agmatine in rat pulmonary artery endothelial cells. J Pharmacol Exp Ther. 2001 Feb;296(2):372–377. [PubMed] [Google Scholar]
  2. Balasundaram D., Tyagi A. K. Modulation of arginine decarboxylase activity from Mycobacterium smegmatis. Evidence for pyridoxal-5'-phosphate-mediated conformational changes in the enzyme. Eur J Biochem. 1989 Aug 1;183(2):339–345. doi: 10.1111/j.1432-1033.1989.tb14934.x. [DOI] [PubMed] [Google Scholar]
  3. Bence Aimee K., Worthen David R., Stables James P., Crooks Peter A. An in vivo evaluation of the antiseizure activity and acute neurotoxicity of agmatine. Pharmacol Biochem Behav. 2003 Feb;74(3):771–775. doi: 10.1016/s0091-3057(02)01079-1. [DOI] [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  5. Burtin D., Michael A. J. Overexpression of arginine decarboxylase in transgenic plants. Biochem J. 1997 Jul 15;325(Pt 2):331–337. doi: 10.1042/bj3250331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chang K. S., Lee S. H., Hwang S. B., Park K. Y. Characterization and translational regulation of the arginine decarboxylase gene in carnation (Dianthus caryophyllus L.). Plant J. 2000 Oct;24(1):45–56. doi: 10.1046/j.0960-7412.2000.00854.x. [DOI] [PubMed] [Google Scholar]
  7. Childs A. C., Mehta D. J., Gerner E. W. Polyamine-dependent gene expression. Cell Mol Life Sci. 2003 Jul;60(7):1394–1406. doi: 10.1007/s00018-003-2332-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Coleman C. S., Stanley B. A., Pegg A. E. Effect of mutations at active site residues on the activity of ornithine decarboxylase and its inhibition by active site-directed irreversible inhibitors. J Biol Chem. 1993 Nov 25;268(33):24572–24579. [PubMed] [Google Scholar]
  9. Coleman C. S., Stanley B. A., Viswanath R., Pegg A. E. Rapid exchange of subunits of mammalian ornithine decarboxylase. J Biol Chem. 1994 Feb 4;269(5):3155–3158. [PubMed] [Google Scholar]
  10. Colleluori D. M., Morris S. M., Jr, Ash D. E. Expression, purification, and characterization of human type II arginase. Arch Biochem Biophys. 2001 May 1;389(1):135–143. doi: 10.1006/abbi.2001.2324. [DOI] [PubMed] [Google Scholar]
  11. Dudkowska Magdalena, Lai Jeanne, Gardini Giulia, Stachurska Agnieszka, Grzelakowska-Sztabert Barbara, Colombatto Sebastiano, Manteuffel-Cymborowska Małgorzata. Agmatine modulates the in vivo biosynthesis and interconversion of polyamines and cell proliferation. Biochim Biophys Acta. 2003 Jan 20;1619(2):159–166. doi: 10.1016/s0304-4165(02)00476-2. [DOI] [PubMed] [Google Scholar]
  12. Gale E. F. The production of amines by bacteria: The decarboxylation of amino-acids by strains of Bacterium coli. Biochem J. 1940 Mar;34(3):392–413. doi: 10.1042/bj0340392. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Graham David E., Xu Huimin, White Robert H. Methanococcus jannaschii uses a pyruvoyl-dependent arginine decarboxylase in polyamine biosynthesis. J Biol Chem. 2002 Apr 29;277(26):23500–23507. doi: 10.1074/jbc.M203467200. [DOI] [PubMed] [Google Scholar]
  14. Hanfrey C., Sommer S., Mayer M. J., Burtin D., Michael A. J. Arabidopsis polyamine biosynthesis: absence of ornithine decarboxylase and the mechanism of arginine decarboxylase activity. Plant J. 2001 Sep;27(6):551–560. doi: 10.1046/j.1365-313x.2001.01100.x. [DOI] [PubMed] [Google Scholar]
  15. Hayashi S., Kameji T. Ornithine decarboxylase (rat liver). Methods Enzymol. 1983;94:154–158. doi: 10.1016/s0076-6879(83)94024-7. [DOI] [PubMed] [Google Scholar]
  16. Hayashi S., Murakami Y., Matsufuji S. Ornithine decarboxylase antizyme: a novel type of regulatory protein. Trends Biochem Sci. 1996 Jan;21(1):27–30. [PubMed] [Google Scholar]
  17. Hillary Rebecca A., Pegg Anthony E. Decarboxylases involved in polyamine biosynthesis and their inactivation by nitric oxide. Biochim Biophys Acta. 2003 Apr 11;1647(1-2):161–166. doi: 10.1016/s1570-9639(03)00088-8. [DOI] [PubMed] [Google Scholar]
  18. Illingworth Crista, Mayer Melinda J., Elliott Katherine, Hanfrey Colin, Walton Nicholas J., Michael Anthony J. The diverse bacterial origins of the Arabidopsis polyamine biosynthetic pathway. FEBS Lett. 2003 Aug 14;549(1-3):26–30. doi: 10.1016/s0014-5793(03)00756-7. [DOI] [PubMed] [Google Scholar]
  19. Iyer Ramaswamy K., Kim Ho K., Tsoa Rosemarie W., Grody Wayne W., Cederbaum Stephen D. Cloning and characterization of human agmatinase. Mol Genet Metab. 2002 Mar;75(3):209–218. doi: 10.1006/mgme.2001.3277. [DOI] [PubMed] [Google Scholar]
  20. Jackson L. K., Brooks H. B., Osterman A. L., Goldsmith E. J., Phillips M. A. Altering the reaction specificity of eukaryotic ornithine decarboxylase. Biochemistry. 2000 Sep 19;39(37):11247–11257. doi: 10.1021/bi001209s. [DOI] [PubMed] [Google Scholar]
  21. Janowitz Tim, Kneifel Helmut, Piotrowski Markus. Identification and characterization of plant agmatine iminohydrolase, the last missing link in polyamine biosynthesis of plants. FEBS Lett. 2003 Jun 5;544(1-3):258–261. doi: 10.1016/s0014-5793(03)00515-5. [DOI] [PubMed] [Google Scholar]
  22. Keithly J. S., Zhu G., Upton S. J., Woods K. M., Martinez M. P., Yarlett N. Polyamine biosynthesis in Cryptosporidium parvum and its implications for chemotherapy. Mol Biochem Parasitol. 1997 Sep;88(1-2):35–42. doi: 10.1016/s0166-6851(97)00063-7. [DOI] [PubMed] [Google Scholar]
  23. Khan A. J., Minocha S. C. Biosynthetic arginine decarboxylase in phytopathogenic fungi. Life Sci. 1989;44(17):1215–1222. doi: 10.1016/0024-3205(89)90317-2. [DOI] [PubMed] [Google Scholar]
  24. Li G., Regunathan S., Barrow C. J., Eshraghi J., Cooper R., Reis D. J. Agmatine: an endogenous clonidine-displacing substance in the brain. Science. 1994 Feb 18;263(5149):966–969. doi: 10.1126/science.7906055. [DOI] [PubMed] [Google Scholar]
  25. Lortie M. J., Novotny W. F., Peterson O. W., Vallon V., Malvey K., Mendonca M., Satriano J., Insel P., Thomson S. C., Blantz R. C. Agmatine, a bioactive metabolite of arginine. Production, degradation, and functional effects in the kidney of the rat. J Clin Invest. 1996 Jan 15;97(2):413–420. doi: 10.1172/JCI118430. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. McCann P. P., Pegg A. E. Ornithine decarboxylase as an enzyme target for therapy. Pharmacol Ther. 1992;54(2):195–215. doi: 10.1016/0163-7258(92)90032-u. [DOI] [PubMed] [Google Scholar]
  27. Mistry Sanjay K., Burwell Tim J., Chambers Rebecca M., Rudolph-Owen Laura, Spaltmann Frank, Cook W. Jim, Morris Sidney M., Jr Cloning of human agmatinase. An alternate path for polyamine synthesis induced in liver by hepatitis B virus. Am J Physiol Gastrointest Liver Physiol. 2002 Feb;282(2):G375–G381. doi: 10.1152/ajpgi.00386.2001. [DOI] [PubMed] [Google Scholar]
  28. Mitchell J. L., Judd G. G., Bareyal-Leyser A., Ling S. Y. Feedback repression of polyamine transport is mediated by antizyme in mammalian tissue-culture cells. Biochem J. 1994 Apr 1;299(Pt 1):19–22. doi: 10.1042/bj2990019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Moore R. C., Boyle S. M. Nucleotide sequence and analysis of the speA gene encoding biosynthetic arginine decarboxylase in Escherichia coli. J Bacteriol. 1990 Aug;172(8):4631–4640. doi: 10.1128/jb.172.8.4631-4640.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Morris D. R., Pardee A. B. Multiple pathways of putrescine biosynthesis in Escherichia coli. J Biol Chem. 1966 Jul 10;241(13):3129–3135. [PubMed] [Google Scholar]
  31. Morrissey J., McCracken R., Ishidoya S., Klahr S. Partial cloning and characterization of an arginine decarboxylase in the kidney. Kidney Int. 1995 May;47(5):1458–1461. doi: 10.1038/ki.1995.204. [DOI] [PubMed] [Google Scholar]
  32. Myers D. P., Jackson L. K., Ipe V. G., Murphy G. E., Phillips M. A. Long-range interactions in the dimer interface of ornithine decarboxylase are important for enzyme function. Biochemistry. 2001 Nov 6;40(44):13230–13236. doi: 10.1021/bi0155908. [DOI] [PubMed] [Google Scholar]
  33. Nakada Yuji, Itoh Yoshifumi. Identification of the putrescine biosynthetic genes in Pseudomonas aeruginosa and characterization of agmatine deiminase and N-carbamoylputrescine amidohydrolase of the arginine decarboxylase pathway. Microbiology. 2003 Mar;149(Pt 3):707–714. doi: 10.1099/mic.0.26009-0. [DOI] [PubMed] [Google Scholar]
  34. Nissim Itzhak, Horyn Oksana, Daikhin Yevgeny, Nissim Ilana, Lazarow Adam, Yudkoff Marc. Regulation of urea synthesis by agmatine in the perfused liver: studies with 15N. Am J Physiol Endocrinol Metab. 2002 Aug 13;283(6):E1123–E1134. doi: 10.1152/ajpendo.00246.2002. [DOI] [PubMed] [Google Scholar]
  35. Osterman A. L., Kinch L. N., Grishin N. V., Phillips M. A. Acidic residues important for substrate binding and cofactor reactivity in eukaryotic ornithine decarboxylase identified by alanine scanning mutagenesis. J Biol Chem. 1995 May 19;270(20):11797–11802. doi: 10.1074/jbc.270.20.11797. [DOI] [PubMed] [Google Scholar]
  36. Page R. D. TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci. 1996 Aug;12(4):357–358. doi: 10.1093/bioinformatics/12.4.357. [DOI] [PubMed] [Google Scholar]
  37. Pegg A. E., Feith D. J., Fong L. Y. Y., Coleman C. S., O'Brien T. G., Shantz L. M. Transgenic mouse models for studies of the role of polyamines in normal, hypertrophic and neoplastic growth. Biochem Soc Trans. 2003 Apr;31(2):356–360. doi: 10.1042/bst0310356. [DOI] [PubMed] [Google Scholar]
  38. Pegg A. E., McGill S. Decarboxylation of ornithine and lysine in rat tissues. Biochim Biophys Acta. 1979 Jun 6;568(2):416–427. doi: 10.1016/0005-2744(79)90310-3. [DOI] [PubMed] [Google Scholar]
  39. Pegg A. E. Recent advances in the biochemistry of polyamines in eukaryotes. Biochem J. 1986 Mar 1;234(2):249–262. doi: 10.1042/bj2340249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Pegg A. E., Wechter R., Poulin R., Woster P. M., Coward J. K. Effect of S-adenosyl-1,12-diamino-3-thio-9-azadodecane, a multisubstrate adduct inhibitor of spermine synthase, on polyamine metabolism in mammalian cells. Biochemistry. 1989 Oct 17;28(21):8446–8453. doi: 10.1021/bi00447a026. [DOI] [PubMed] [Google Scholar]
  41. Pegg A. E., Williams-Ashman H. G. Biosynthesis of putrescine in the prostate gland of the rat. Biochem J. 1968 Jul;108(4):533–539. doi: 10.1042/bj1080533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Phillips M. A., Coffino P., Wang C. C. Trypanosoma brucei ornithine decarboxylase: enzyme purification, characterization, and expression in Escherichia coli. J Biol Chem. 1988 Dec 5;263(34):17933–17941. [PubMed] [Google Scholar]
  43. Piotrowski Markus, Janowitz Tim, Kneifel Helmut. Plant C-N hydrolases and the identification of a plant N-carbamoylputrescine amidohydrolase involved in polyamine biosynthesis. J Biol Chem. 2002 Nov 14;278(3):1708–1712. doi: 10.1074/jbc.M205699200. [DOI] [PubMed] [Google Scholar]
  44. Pitkänen L. T., Heiskala M., Andersson L. C. Expression of a novel human ornithine decarboxylase-like protein in the central nervous system and testes. Biochem Biophys Res Commun. 2001 Oct 12;287(5):1051–1057. doi: 10.1006/bbrc.2001.5703. [DOI] [PubMed] [Google Scholar]
  45. Raasch W., Regunathan S., Li G., Reis D. J. Agmatine, the bacterial amine, is widely distributed in mammalian tissues. Life Sci. 1995;56(26):2319–2330. doi: 10.1016/0024-3205(95)00226-v. [DOI] [PubMed] [Google Scholar]
  46. Raasch W., Schäfer U., Chun J., Dominiak P. Biological significance of agmatine, an endogenous ligand at imidazoline binding sites. Br J Pharmacol. 2001 Jul;133(6):755–780. doi: 10.1038/sj.bjp.0704153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Regunathan S., Reis D. J. Characterization of arginine decarboxylase in rat brain and liver: distinction from ornithine decarboxylase. J Neurochem. 2000 May;74(5):2201–2208. doi: 10.1046/j.1471-4159.2000.0742201.x. [DOI] [PubMed] [Google Scholar]
  48. Regunathan S., Youngson C., Raasch W., Wang H., Reis D. J. Imidazoline receptors and agmatine in blood vessels: a novel system inhibiting vascular smooth muscle proliferation. J Pharmacol Exp Ther. 1996 Mar;276(3):1272–1282. [PubMed] [Google Scholar]
  49. Reis D. J., Regunathan S. Agmatine: an endogenous ligand at imidazoline receptors is a novel neurotransmitter. Ann N Y Acad Sci. 1999 Jun 21;881:65–80. doi: 10.1111/j.1749-6632.1999.tb09343.x. [DOI] [PubMed] [Google Scholar]
  50. Reis D. J., Regunathan S. Is agmatine a novel neurotransmitter in brain? Trends Pharmacol Sci. 2000 May;21(5):187–193. doi: 10.1016/s0165-6147(00)01460-7. [DOI] [PubMed] [Google Scholar]
  51. Sakata K., Fukuchi-Shimogori T., Kashiwagi K., Igarashi K. Identification of regulatory region of antizyme necessary for the negative regulation of polyamine transport. Biochem Biophys Res Commun. 1997 Sep 18;238(2):415–419. doi: 10.1006/bbrc.1997.7266. [DOI] [PubMed] [Google Scholar]
  52. Sastre M., Regunathan S., Galea E., Reis D. J. Agmatinase activity in rat brain: a metabolic pathway for the degradation of agmatine. J Neurochem. 1996 Oct;67(4):1761–1765. doi: 10.1046/j.1471-4159.1996.67041761.x. [DOI] [PubMed] [Google Scholar]
  53. Satriano J., Isome M., Casero R. A., Jr, Thomson S. C., Blantz R. C. Polyamine transport system mediates agmatine transport in mammalian cells. Am J Physiol Cell Physiol. 2001 Jul;281(1):C329–C334. doi: 10.1152/ajpcell.2001.281.1.C329. [DOI] [PubMed] [Google Scholar]
  54. Satriano J., Matsufuji S., Murakami Y., Lortie M. J., Schwartz D., Kelly C. J., Hayashi S., Blantz R. C. Agmatine suppresses proliferation by frameshift induction of antizyme and attenuation of cellular polyamine levels. J Biol Chem. 1998 Jun 19;273(25):15313–15316. doi: 10.1074/jbc.273.25.15313. [DOI] [PubMed] [Google Scholar]
  55. Storrie B., Madden E. A. Isolation of subcellular organelles. Methods Enzymol. 1990;182:203–225. doi: 10.1016/0076-6879(90)82018-w. [DOI] [PubMed] [Google Scholar]
  56. Szumanski M. B., Boyle S. M. Analysis and sequence of the speB gene encoding agmatine ureohydrolase, a putrescine biosynthetic enzyme in Escherichia coli. J Bacteriol. 1990 Feb;172(2):538–547. doi: 10.1128/jb.172.2.538-547.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Thomas T., Thomas T. J. Polyamines in cell growth and cell death: molecular mechanisms and therapeutic applications. Cell Mol Life Sci. 2001 Feb;58(2):244–258. doi: 10.1007/PL00000852. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Tolbert W. David, Graham David E., White Robert H., Ealick Steven E. Pyruvoyl-dependent arginine decarboxylase from Methanococcus jannaschii: crystal structures of the self-cleaved and S53A proenzyme forms. Structure. 2003 Mar;11(3):285–294. doi: 10.1016/s0969-2126(03)00026-1. [DOI] [PubMed] [Google Scholar]
  59. Vargiu C., Cabella C., Belliardo S., Cravanzola C., Grillo M. A., Colombatto S. Agmatine modulates polyamine content in hepatocytes by inducing spermidine/spermine acetyltransferase. Eur J Biochem. 1999 Feb;259(3):933–938. doi: 10.1046/j.1432-1327.1999.00126.x. [DOI] [PubMed] [Google Scholar]
  60. Wallace Heather M., Fraser Alison V., Hughes Alun. A perspective of polyamine metabolism. Biochem J. 2003 Nov 15;376(Pt 1):1–14. doi: 10.1042/BJ20031327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Wang H., Regunathan S., Youngson C., Bramwell S., Reis D. J. An antibody to agmatine localizes the amine in bovine adrenal chromaffin cells. Neurosci Lett. 1995 Jan 2;183(1-2):17–21. doi: 10.1016/0304-3940(94)11104-q. [DOI] [PubMed] [Google Scholar]
  62. Wu G., Morris S. M., Jr Arginine metabolism: nitric oxide and beyond. Biochem J. 1998 Nov 15;336(Pt 1):1–17. doi: 10.1042/bj3360001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Wu W. H., Morris D. R. Biosynthetic arginine decarboxylase from Escherichia coli. Purification and properties. J Biol Chem. 1973 Mar 10;248(5):1687–1695. [PubMed] [Google Scholar]
  64. Yu Hong, Yoo Paul K., Aguirre Claudia C., Tsoa Rosemarie W., Kern Rita M., Grody Wayne W., Cederbaum Stephen D., Iyer Ramaswamy K. Widespread expression of arginase I in mouse tissues. Biochemical and physiological implications. J Histochem Cytochem. 2003 Sep;51(9):1151–1160. doi: 10.1177/002215540305100905. [DOI] [PubMed] [Google Scholar]
  65. Zhu Meng-Yang, Iyo Abiye, Piletz John E., Regunathan Soundar. Expression of human arginine decarboxylase, the biosynthetic enzyme for agmatine. Biochim Biophys Acta. 2004 Jan 22;1670(2):156–164. doi: 10.1016/j.bbagen.2003.11.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. del Valle A. E., Paz J. C., Sánchez-Jiménez F., Medina M. A. Agmatine uptake by cultured hamster kidney cells. Biochem Biophys Res Commun. 2001 Jan 12;280(1):307–311. doi: 10.1006/bbrc.2000.4101. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES