Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 May 1;379(Pt 3):721–729. doi: 10.1042/BJ20031826

Conversion into GABA (gamma-aminobutyric acid) may reduce the capacity of L-glutamine as an insulin secretagogue.

Sergio Fernández-Pascual 1, André Mukala-Nsengu-Tshibangu 1, Rafael Martín Del Río 1, Jorge Tamarit-Rodríguez 1
PMCID: PMC1224127  PMID: 14763900

Abstract

We have carried out a detailed examination of L-glutamine metabolism in rat islets in order to elucidate the paradoxical failure of L-glutamine to stimulate insulin secretion. L-Glutamine was converted by isolated islets into GABA (gamma-aminobutyric acid), L-aspartate and L-glutamate. Saturation of the intracellular concentrations of all of these amino acids occurred at approx. 10 mmol/l L-glutamine, and their half-maximal values were attained at progressively increasing concentrations of L-glutamine (0.3 mmol/l for GABA; 0.5 and 1.0 mmol/l for Asp and Glu respectively). GABA accumulation accounted for most of the 14CO2 produced at various L-[U-14C]glutamine concentrations. Potentiation by L-glutamine of L-leucine-induced insulin secretion in perifused islets was suppressed by malonic acid dimethyl ester, was accompanied by a significant decrease in islet GABA accumulation, and was not modified in the presence of GABA receptor antagonists [50 micromol/l saclofen or 10 micromol/l (+)-bicuculline]. L-Leucine activated islet glutamate dehydrogenase activity, but had no effect on either glutamate decarboxylase or GABA transaminase activity, in islet homogenates. We conclude that (i) L-glutamine is metabolized preferentially to GABA and L-aspartate, which accumulate in islets, thus preventing its complete oxidation in the Krebs cycle, which accounts for its failure to stimulate insulin secretion; (ii) potentiation by L-glutamine of L-leucine-induced insulin secretion involves increased metabolism of L-glutamate and GABA via the Krebs cycle (glutamate dehydrogenase activation) and the GABA shunt (2-oxoglutarate availability for GABA transaminase) respectively, and (iii) islet release of GABA does not seem to play an important role in the modulation of the islet secretory response to the combination of L-leucine and L-glutamine.

Full Text

The Full Text of this article is available as a PDF (219.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashcroft S. J., Weerasinghe L. C., Bassett J. M., Randle P. J. The pentose cycle and insulin release in mouse pancreatic islets. Biochem J. 1972 Feb;126(3):525–532. doi: 10.1042/bj1260525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ashcroft S. J., Weerasinghe L. C., Randle P. J. Interrelationship of islet metabolism, adenosine triphosphate content and insulin release. Biochem J. 1973 Feb;132(2):223–231. doi: 10.1042/bj1320223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bertrand Gyslaine, Ishiyama Nobuyoshi, Nenquin Myriam, Ravier Magalie A., Henquin Jean-Claude. The elevation of glutamate content and the amplification of insulin secretion in glucose-stimulated pancreatic islets are not causally related. J Biol Chem. 2002 Jun 26;277(36):32883–32891. doi: 10.1074/jbc.M205326200. [DOI] [PubMed] [Google Scholar]
  4. Brice N. L., Varadi A., Ashcroft S. J. H., Molnar E. Metabotropic glutamate and GABA(B) receptors contribute to the modulation of glucose-stimulated insulin secretion in pancreatic beta cells. Diabetologia. 2002 Feb;45(2):242–252. doi: 10.1007/s00125-001-0750-0. [DOI] [PubMed] [Google Scholar]
  5. Bryła J., Michalik M., Nelson J., Erecińska M. Regulation of the glutamate dehydrogenase activity in rat islets of Langerhans and its consequence on insulin release. Metabolism. 1994 Sep;43(9):1187–1195. doi: 10.1016/0026-0495(94)90064-7. [DOI] [PubMed] [Google Scholar]
  6. Bustamante J., Lobo M. V., Alonso F. J., Mukala N. T., Giné E., Solís J. M., Tamarit-Rodriguez J., Martín Del Río R. An osmotic-sensitive taurine pool is localized in rat pancreatic islet cells containing glucagon and somatostatin. Am J Physiol Endocrinol Metab. 2001 Dec;281(6):E1275–E1285. doi: 10.1152/ajpendo.2001.281.6.E1275. [DOI] [PubMed] [Google Scholar]
  7. Danielsson A., Hellman B., Idahl L. A. Levels of -ketoglutarate and glutamate in stimulated pancreatic -cells. Horm Metab Res. 1970 Jan;2(1):28–31. doi: 10.1055/s-0028-1095123. [DOI] [PubMed] [Google Scholar]
  8. Degli Esposti M., Mackay I. R. The GABA network and the pathogenesis of IDDM. Diabetologia. 1997 Mar;40(3):352–356. doi: 10.1007/s001250050687. [DOI] [PubMed] [Google Scholar]
  9. Fahien L. A., MacDonald M. J., Kmiotek E. H., Mertz R. J., Fahien C. M. Regulation of insulin release by factors that also modify glutamate dehydrogenase. J Biol Chem. 1988 Sep 25;263(27):13610–13614. [PubMed] [Google Scholar]
  10. Gao Z. Y., Li G., Najafi H., Wolf B. A., Matschinsky F. M. Glucose regulation of glutaminolysis and its role in insulin secretion. Diabetes. 1999 Aug;48(8):1535–1542. doi: 10.2337/diabetes.48.8.1535. [DOI] [PubMed] [Google Scholar]
  11. Gylfe E. Comparison of the effects of leucines, non-metabolizable leucine analogues and other insulin secretagogues on the activity of glutamate dehydrogenase. Acta Diabetol Lat. 1976 Jan-Apr;13(1-2):20–24. doi: 10.1007/BF02591577. [DOI] [PubMed] [Google Scholar]
  12. HUNTER W. M., GREENWOOD F. C. Preparation of iodine-131 labelled human growth hormone of high specific activity. Nature. 1962 May 5;194:495–496. doi: 10.1038/194495a0. [DOI] [PubMed] [Google Scholar]
  13. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  14. Li Changhong, Najafi Habiba, Daikhin Yevgeny, Nissim Ilana B., Collins Heather W., Yudkoff Marc, Matschinsky Franz M., Stanley Charles A. Regulation of leucine-stimulated insulin secretion and glutamine metabolism in isolated rat islets. J Biol Chem. 2002 Nov 19;278(5):2853–2858. doi: 10.1074/jbc.M210577200. [DOI] [PubMed] [Google Scholar]
  15. MacDonald M. J., Fahien L. A. Glutamate is not a messenger in insulin secretion. J Biol Chem. 2000 Nov 3;275(44):34025–34027. doi: 10.1074/jbc.C000411200. [DOI] [PubMed] [Google Scholar]
  16. Maechler P., Wollheim C. B. Mitochondrial glutamate acts as a messenger in glucose-induced insulin exocytosis. Nature. 1999 Dec 9;402(6762):685–689. doi: 10.1038/45280. [DOI] [PubMed] [Google Scholar]
  17. Malaisse W. J., Sener A., Carpinelli A. R., Anjaneyulu K., Lebrun P., Herchuelz A., Christophe J. The stimulus-secretion coupling of glucose-induced insulin release. XLVI. Physiological role of L-glutamine as a fuel for pancreatic islets. Mol Cell Endocrinol. 1980 Nov;20(2):171–189. doi: 10.1016/0303-7207(80)90080-5. [DOI] [PubMed] [Google Scholar]
  18. Malaisse W. J., Sener A., Malaisse-Lagae F. Insulin release: reconciliation of the receptor and metabolic hypotheses. Nutrient receptors in islet cells. Mol Cell Biochem. 1981 Jul;37(3):157–165. doi: 10.1007/BF02354884. [DOI] [PubMed] [Google Scholar]
  19. Malaisse W. J., Sener A., Malaisse-Lagae F., Welsh M., Matthews D. E., Bier D. M., Hellerström C. The stimulus-secretion coupling of amino acid-induced insulin release. Metabolic response of pancreatic islets of L-glutamine and L-leucine. J Biol Chem. 1982 Aug 10;257(15):8731–8737. [PubMed] [Google Scholar]
  20. Michalik M., Nelson J., Erecińska M. GABA production in rat islets of Langerhans. Diabetes. 1993 Oct;42(10):1506–1513. doi: 10.2337/diab.42.10.1506. [DOI] [PubMed] [Google Scholar]
  21. Michalik M., Nelson J., Erecińska M. Glutamate production in islets of Langerhans: properties of phosphate-activated glutaminase. Metabolism. 1992 Dec;41(12):1319–1326. doi: 10.1016/0026-0495(92)90102-g. [DOI] [PubMed] [Google Scholar]
  22. Mukala-Nsengu André, Fernández-Pascual Sergio, Martín Francisco, Martín-del-Río Rafael, Tamarit-Rodriguez Jorge. Similar effects of succinic acid dimethyl ester and glucose on islet calcium oscillations and insulin release. Biochem Pharmacol. 2004 Mar 1;67(5):981–988. doi: 10.1016/j.bcp.2003.10.024. [DOI] [PubMed] [Google Scholar]
  23. Panten U., Zielmann S., Langer J., Zünkler B. J., Lenzen S. Regulation of insulin secretion by energy metabolism in pancreatic B-cell mitochondria. Studies with a non-metabolizable leucine analogue. Biochem J. 1984 Apr 1;219(1):189–196. doi: 10.1042/bj2190189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Pozzilli P., Leslie R. D. Hyperexpression of GAD in the islets may be relevant but is it sufficient to induce autoimmune insulitis? Diabetologia. 1997 Mar;40(3):357–361. doi: 10.1007/s001250050688. [DOI] [PubMed] [Google Scholar]
  25. Reingold D. F., Orlowski M. Inhibition of brain glutamate decarboxylase by 2-keto-4-pentenoic acid, a metabolite of allylglycine. J Neurochem. 1979 Mar;32(3):907–913. doi: 10.1111/j.1471-4159.1979.tb04574.x. [DOI] [PubMed] [Google Scholar]
  26. Rorsman P., Berggren P. O., Bokvist K., Ericson H., Möhler H., Ostenson C. G., Smith P. A. Glucose-inhibition of glucagon secretion involves activation of GABAA-receptor chloride channels. Nature. 1989 Sep 21;341(6239):233–236. doi: 10.1038/341233a0. [DOI] [PubMed] [Google Scholar]
  27. Rubi B., Ishihara H., Hegardt F. G., Wollheim C. B., Maechler P. GAD65-mediated glutamate decarboxylation reduces glucose-stimulated insulin secretion in pancreatic beta cells. J Biol Chem. 2001 Jul 25;276(39):36391–36396. doi: 10.1074/jbc.M104999200. [DOI] [PubMed] [Google Scholar]
  28. Sener A., Malaisse-Lagae F., Malaisse W. J. The stimulus-secretion coupling of glucose-induced insulin release. Environmental influences on L-glutamine oxidation in pancreatic islets. Biochem J. 1982 Feb 15;202(2):309–316. doi: 10.1042/bj2020309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Sener A., Malaisse W. J. L-leucine and a nonmetabolized analogue activate pancreatic islet glutamate dehydrogenase. Nature. 1980 Nov 13;288(5787):187–189. doi: 10.1038/288187a0. [DOI] [PubMed] [Google Scholar]
  30. Sener A., Malaisse W. J. Stimulation of insulin release by L-glutamine. Mol Cell Biochem. 1980 Dec 16;33(3):157–159. doi: 10.1007/BF00225288. [DOI] [PubMed] [Google Scholar]
  31. Shi Y., Kanaani J., Menard-Rose V., Ma Y. H., Chang P. Y., Hanahan D., Tobin A., Grodsky G., Baekkeskov S. Increased expression of GAD65 and GABA in pancreatic beta-cells impairs first-phase insulin secretion. Am J Physiol Endocrinol Metab. 2000 Sep;279(3):E684–E694. doi: 10.1152/ajpendo.2000.279.3.E684. [DOI] [PubMed] [Google Scholar]
  32. Smismans A., Schuit F., Pipeleers D. Nutrient regulation of gamma-aminobutyric acid release from islet beta cells. Diabetologia. 1997 Dec;40(12):1411–1415. doi: 10.1007/s001250050843. [DOI] [PubMed] [Google Scholar]
  33. Somers G., Carpinelli A. R., Devis G., Sener A., Malaisse W. J. Stimulus-secretion coupling of amino acid-induced insulin release VII. The B-cell memory for L-glutamine. Metabolism. 1982 Mar;31(3):229–237. doi: 10.1016/0026-0495(82)90058-0. [DOI] [PubMed] [Google Scholar]
  34. Sorenson R. L., Garry D. G., Brelje T. C. Structural and functional considerations of GABA in islets of Langerhans. Beta-cells and nerves. Diabetes. 1991 Nov;40(11):1365–1374. doi: 10.2337/diab.40.11.1365. [DOI] [PubMed] [Google Scholar]
  35. Thomas-Reetz A. C., De Camilli P. A role for synaptic vesicles in non-neuronal cells: clues from pancreatic beta cells and from chromaffin cells. FASEB J. 1994 Feb;8(2):209–216. doi: 10.1096/fasebj.8.2.7907072. [DOI] [PubMed] [Google Scholar]
  36. Vytásek R. A sensitive fluorometric assay for the determination of DNA. Anal Biochem. 1982 Mar 1;120(2):243–248. doi: 10.1016/0003-2697(82)90342-6. [DOI] [PubMed] [Google Scholar]
  37. Winnock Frederic, Ling Zhidong, De Proft Rene, Dejonghe Sandra, Schuit Frans, Gorus Frans, Pipeleers Daniel. Correlation between GABA release from rat islet beta-cells and their metabolic state. Am J Physiol Endocrinol Metab. 2002 Apr;282(4):E937–E942. doi: 10.1152/ajpendo.00071.2001. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES