Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 May 1;379(Pt 3):595–600. doi: 10.1042/BJ20031367

The identification of a reaction site of glutathione mixed-disulphide formation on gammaS-crystallin in human lens.

Jane Craghill 1, Andrew D Cronshaw 1, John J Harding 1
PMCID: PMC1224128  PMID: 14763903

Abstract

The glutathionylation of human lens proteins was examined by Western-blot analysis with an anti-GSH antibody and scanning. Several different glutathionylated proteins were observed, and a 47 kDa band was of particular interest. This band did not appear after SDS/PAGE under reducing conditions, suggesting that it was a glutathionylated fraction. The 47 kDa band was found principally in the outer part of the lens, the cortex, but not in the lens nucleus where older proteins are present. The 47 kDa component was composed of betaB1-, betaB2- and gammaS-crystallin, with the gammaS-crystallin having glutathione bound at Cys-82 and at Cys-22, Cys-24 or Cys-26. We conclude that when glutathione becomes bound to gammaS-crystallin, it causes it to bind in turn to the beta-crystallin polypeptides to form a dimer.

Full Text

The Full Text of this article is available as a PDF (153.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Driessen H. P., Herbrink P., Bloemendal H., de Jong W. W. Primary structure of the bovine beta-crystallin Bp chain. Internal duplication and homology with gamma-crystallin. Eur J Biochem. 1981 Dec;121(1):83–91. doi: 10.1111/j.1432-1033.1981.tb06433.x. [DOI] [PubMed] [Google Scholar]
  2. Hanson S. R., Chen A. A., Smith J. B., Lou M. F. Thiolation of the gammaB-crystallins in intact bovine lens exposed to hydrogen peroxide. J Biol Chem. 1999 Feb 19;274(8):4735–4742. doi: 10.1074/jbc.274.8.4735. [DOI] [PubMed] [Google Scholar]
  3. Harding J. J. Conformational changes in human lens proteins in cataract. Biochem J. 1972 Aug;129(1):97–100. doi: 10.1042/bj1290097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Harding J. J., Dilley K. J. Structural proteins of the mammalian lens: a review with emphasis on changes in development, aging and cataract. Exp Eye Res. 1976 Jan;22(1):1–73. doi: 10.1016/0014-4835(76)90033-6. [DOI] [PubMed] [Google Scholar]
  5. Harding J. J. Disulphide cross-linked protein of high molecular weight in human cataractous lens. Exp Eye Res. 1973 Nov 25;17(4):377–383. doi: 10.1016/0014-4835(73)90247-9. [DOI] [PubMed] [Google Scholar]
  6. Harding J. J. Free and protein-bound glutathione in normal and cataractous human lenses. Biochem J. 1970 May;117(5):957–960. doi: 10.1042/bj1170957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Harding J. J. The nature and origin of the urea-insoluble protein of human lens. Exp Eye Res. 1972 Jan;13(1):33–40. doi: 10.1016/0014-4835(72)90122-4. [DOI] [PubMed] [Google Scholar]
  8. Hum T. P., Augusteyn R. C. The nature of disulphide bonds in rat lens proteins. Curr Eye Res. 1987 Sep;6(9):1103–1108. doi: 10.3109/02713688709034882. [DOI] [PubMed] [Google Scholar]
  9. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  10. Liang J. N., Pelletier M. R. Spectroscopic studies on the mixed disulfide formation of lens crystallin with glutathione. Exp Eye Res. 1987 Aug;45(2):197–206. doi: 10.1016/s0014-4835(87)80143-4. [DOI] [PubMed] [Google Scholar]
  11. Lou M. F., Dickerson J. E., Jr, Garadi R., York B. M., Jr Glutathione depletion in the lens of galactosemic and diabetic rats. Exp Eye Res. 1988 Apr;46(4):517–530. doi: 10.1016/s0014-4835(88)80009-5. [DOI] [PubMed] [Google Scholar]
  12. Lou M. F., McKellar R., Chyan O. Quantitation of lens protein mixed disulfides by ion-exchange chromatography. Exp Eye Res. 1986 Jun;42(6):607–616. doi: 10.1016/0014-4835(86)90050-3. [DOI] [PubMed] [Google Scholar]
  13. Mostafapour M. K., Reddy V. N. Interactions of glutathione disulfide with lens crystallins. Curr Eye Res. 1982;2(9):591–596. doi: 10.3109/02713688208996359. [DOI] [PubMed] [Google Scholar]
  14. Pirie A. Color and solubility of the proteins of human cataracts. Invest Ophthalmol. 1968 Dec;7(6):634–650. [PubMed] [Google Scholar]
  15. Reddy V. N., Giblin F. J. Metabolism and function of glutathione in the lens. Ciba Found Symp. 1984;106:65–87. doi: 10.1002/9780470720875.ch5. [DOI] [PubMed] [Google Scholar]
  16. Slingsby C., Croft L. R. Developmental changes in the low molecular weight proteins of the bovine lens. Exp Eye Res. 1973 Nov 25;17(4):369–376. doi: 10.1016/0014-4835(73)90246-7. [DOI] [PubMed] [Google Scholar]
  17. Slingsby C., Miller L. The reaction of glutathione with the eye-lens protein gamma-crystallin. Biochem J. 1985 Aug 15;230(1):143–150. doi: 10.1042/bj2300143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Smith J. B., Shun-Shin G. A., Sun Y., Miesbauer L. R., Yang Z., Yang Z., Zhou X., Schwedler J., Smith D. L. Glutathione adducts, not carbamylated lysines, are the major modification of lens alpha-crystallins from renal failure patients. J Protein Chem. 1995 Apr;14(3):179–188. doi: 10.1007/BF01980330. [DOI] [PubMed] [Google Scholar]
  19. Smith J. B., Sun Y., Smith D. L., Green B. Identification of the posttranslational modifications of bovine lens alpha B-crystallins by mass spectrometry. Protein Sci. 1992 May;1(5):601–608. doi: 10.1002/pro.5560010506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Truscott R. J., Augusteyn R. C. The state of sulphydryl groups in normal and cataractous human lenses. Exp Eye Res. 1977 Aug;25(2):139–148. doi: 10.1016/0014-4835(77)90126-9. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES