Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 May 1;379(Pt 3):609–615. doi: 10.1042/BJ20031711

Complementation of the yeast deletion mutant DeltaNCE103 by members of the beta class of carbonic anhydrases is dependent on carbonic anhydrase activity rather than on antioxidant activity.

Daniel Clark 1, Roger S Rowlett 1, John R Coleman 1, Daniel F Klessig 1
PMCID: PMC1224134  PMID: 15096093

Abstract

In recent years, members of the beta class of CAs (carbonic anhydrases) have been shown to complement Delta NCE103, a yeast strain unable to grow under aerobic conditions. The activity required for complementation of Delta NCE103 by tobacco chloroplast CA was studied by site-directed mutagenesis. E196A (Glu196-->Ala), a mutated tobacco CA with low levels of CA activity, complemented Delta NCE103. To determine whether restoration of Delta NCE103 was due to residual levels of CA activity or whether it was related to previously proposed antioxidant activity of CAs [Götz, Gnann and Zimmermann (1999) Yeast 15, 855-864], additional complementation analysis was performed using human CAII, an alpha CA structurally unrelated to the beta class of CAs to which the tobacco protein belongs. Human CAII complemented Delta NCE103, strongly arguing that CA activity is responsible for the complementation of Delta NCE103. Consistent with this conclusion, recombinant NCE103 synthesized in Escherichia coli shows CA activity, and Delta NCE103 expressing the tobacco chloroplast CA exhibits the same sensitivity to H2O2 as the wild-type strain.

Full Text

The Full Text of this article is available as a PDF (208.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Al-Feel Walid, DeMar James C., Wakil Salih J. A Saccharomyces cerevisiae mutant strain defective in acetyl-CoA carboxylase arrests at the G2/M phase of the cell cycle. Proc Natl Acad Sci U S A. 2003 Mar 7;100(6):3095–3100. doi: 10.1073/pnas.0538069100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bracey M. H., Christiansen J., Tovar P., Cramer S. P., Bartlett S. G. Spinach carbonic anhydrase: investigation of the zinc-binding ligands by site-directed mutagenesis, elemental analysis, and EXAFS. Biochemistry. 1994 Nov 8;33(44):13126–13131. doi: 10.1021/bi00248a023. [DOI] [PubMed] [Google Scholar]
  3. Cleves A. E., Cooper D. N., Barondes S. H., Kelly R. B. A new pathway for protein export in Saccharomyces cerevisiae. J Cell Biol. 1996 Jun;133(5):1017–1026. doi: 10.1083/jcb.133.5.1017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cronk J. D., Endrizzi J. A., Cronk M. R., O'neill J. W., Zhang K. Y. Crystal structure of E. coli beta-carbonic anhydrase, an enzyme with an unusual pH-dependent activity. Protein Sci. 2001 May;10(5):911–922. doi: 10.1110/ps.46301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fierke C. A., Calderone T. L., Krebs J. F. Functional consequences of engineering the hydrophobic pocket of carbonic anhydrase II. Biochemistry. 1991 Nov 19;30(46):11054–11063. doi: 10.1021/bi00110a007. [DOI] [PubMed] [Google Scholar]
  6. Fukuzawa H., Suzuki E., Komukai Y., Miyachi S. A gene homologous to chloroplast carbonic anhydrase (icfA) is essential to photosynthetic carbon dioxide fixation by Synechococcus PCC7942. Proc Natl Acad Sci U S A. 1992 May 15;89(10):4437–4441. doi: 10.1073/pnas.89.10.4437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Götz R., Gnann A., Zimmermann F. K. Deletion of the carbonic anhydrase-like gene NCE103 of the yeast Saccharomyces cerevisiae causes an oxygen-sensitive growth defect. Yeast. 1999 Jul;15(10A):855–864. doi: 10.1002/(SICI)1097-0061(199907)15:10A<855::AID-YEA425>3.0.CO;2-C. [DOI] [PubMed] [Google Scholar]
  8. Hatch M. D., Burnell J. N. Carbonic anhydrase activity in leaves and its role in the first step of c(4) photosynthesis. Plant Physiol. 1990 Jun;93(2):825–828. doi: 10.1104/pp.93.2.825. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Henry R. P. Multiple roles of carbonic anhydrase in cellular transport and metabolism. Annu Rev Physiol. 1996;58:523–538. doi: 10.1146/annurev.ph.58.030196.002515. [DOI] [PubMed] [Google Scholar]
  10. Johnston M. Feasting, fasting and fermenting. Glucose sensing in yeast and other cells. Trends Genet. 1999 Jan;15(1):29–33. doi: 10.1016/s0168-9525(98)01637-0. [DOI] [PubMed] [Google Scholar]
  11. Kimber M. S., Pai E. F. The active site architecture of Pisum sativum beta-carbonic anhydrase is a mirror image of that of alpha-carbonic anhydrases. EMBO J. 2000 Apr 3;19(7):1407–1418. doi: 10.1093/emboj/19.7.1407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kusian Bernhard, Sültemeyer Dieter, Bowien Botho. Carbonic anhydrase is essential for growth of Ralstonia eutropha at ambient CO(2) concentrations. J Bacteriol. 2002 Sep;184(18):5018–5026. doi: 10.1128/JB.184.18.5018-5026.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Liljas A., Laurberg M. A wheel invented three times. The molecular structures of the three carbonic anhydrases. EMBO Rep. 2000 Jul;1(1):16–17. doi: 10.1093/embo-reports/kvd016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lynch C. J., Fox H., Hazen S. A., Stanley B. A., Dodgson S., Lanoue K. F. Role of hepatic carbonic anhydrase in de novo lipogenesis. Biochem J. 1995 Aug 15;310(Pt 1):197–202. doi: 10.1042/bj3100197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Majeau N., Arnoldo M. A., Coleman J. R. Modification of carbonic anhydrase activity by antisense and over-expression constructs in transgenic tobacco. Plant Mol Biol. 1994 Jun;25(3):377–385. doi: 10.1007/BF00043867. [DOI] [PubMed] [Google Scholar]
  16. Majeau N., Coleman J. R. Nucleotide sequence of a complementary DNA encoding tobacco chloroplastic carbonic anhydrase. Plant Physiol. 1992 Oct;100(2):1077–1078. doi: 10.1104/pp.100.2.1077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Provart N. J., Majeau N., Coleman J. R. Characterization of pea chloroplastic carbonic anhydrase. Expression in Escherichia coli and site-directed mutagenesis. Plant Mol Biol. 1993 Sep;22(6):937–943. doi: 10.1007/BF00028967. [DOI] [PubMed] [Google Scholar]
  18. Rowlett Roger S., Tu Chingkuang, McKay Melissa M., Preiss Jeffrey R., Loomis Rebecca J., Hicks Katherine A., Marchione Robb J., Strong Jacob A., Donovan George S., Jr, Chamberlin Joy E. Kinetic characterization of wild-type and proton transfer-impaired variants of beta-carbonic anhydrase from Arabidopsis thaliana. Arch Biochem Biophys. 2002 Aug 15;404(2):197–209. doi: 10.1016/s0003-9861(02)00243-6. [DOI] [PubMed] [Google Scholar]
  19. Slaymaker David H., Navarre Duroy A., Clark Daniel, del Pozo Olga, Martin Gregory B., Klessig Daniel F. The tobacco salicylic acid-binding protein 3 (SABP3) is the chloroplast carbonic anhydrase, which exhibits antioxidant activity and plays a role in the hypersensitive defense response. Proc Natl Acad Sci U S A. 2002 Aug 15;99(18):11640–11645. doi: 10.1073/pnas.182427699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Smith Kerry S., Ingram-Smith Cheryl, Ferry James G. Roles of the conserved aspartate and arginine in the catalytic mechanism of an archaeal beta-class carbonic anhydrase. J Bacteriol. 2002 Aug;184(15):4240–4245. doi: 10.1128/JB.184.15.4240-4245.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sterling D., Casey J. R. Transport activity of AE3 chloride/bicarbonate anion-exchange proteins and their regulation by intracellular pH. Biochem J. 1999 Nov 15;344(Pt 1):221–229. [PMC free article] [PubMed] [Google Scholar]
  22. Sterling D., Reithmeier R. A., Casey J. R. A transport metabolon. Functional interaction of carbonic anhydrase II and chloride/bicarbonate exchangers. J Biol Chem. 2001 Oct 17;276(51):47886–47894. doi: 10.1074/jbc.M105959200. [DOI] [PubMed] [Google Scholar]
  23. Tripp B. C., Smith K., Ferry J. G. Carbonic anhydrase: new insights for an ancient enzyme. J Biol Chem. 2001 Nov 5;276(52):48615–48618. doi: 10.1074/jbc.R100045200. [DOI] [PubMed] [Google Scholar]
  24. Wong Chi-Ming, Zhou Yuan, Ng Raymond W. M., Kung Hf Hsiang-fu, Jin Dong-Yan. Cooperation of yeast peroxiredoxins Tsa1p and Tsa2p in the cellular defense against oxidative and nitrosative stress. J Biol Chem. 2001 Dec 10;277(7):5385–5394. doi: 10.1074/jbc.M106846200. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES