Abstract
RGS (regulator of G-protein signalling) proteins stimulate the intrinsic GTPase activity of the a subunits of heterotrimeric G-proteins, and thereby negatively regulate G-protein-coupled receptor signalling. RGS14 has been shown previously to stimulate the GTPase activities of Ga(o) and Ga(i) subunits through its N-terminal RGS domain, and to down-modulate signalling from receptors coupled to G(i). It also contains a central domain that binds active Rap proteins, as well as a C-terminal GoLoco/G-protein regulatory motif that has been shown to act in vitro as a GDP-dissociation inhibitor for Ga(i). In order to elucidate the respective contributions of the three functional domains of RGS14 to its ability to regulate G(i) signalling, we generated RGS14 mutants invalidated in each of its domains, as well as truncated molecules, and assessed their effects on G(i) signalling via the bg pathway in a stable cell line ectopically expressing the G(i)-coupled M2 muscarinic acetylcholine receptor (HEK-m2). We show that the RGS and GoLoco domains of RGS14 are independently able to inhibit signalling downstream of G(i). Targeting of the isolated GoLoco domain to membranes, by myristoylation/palmitoylation or Rap binding, enhances its inhibitory activity on G(i) signalling. Finally, in the context of the full RGS14 molecule, the RGS and GoLoco domains co-operate to confer maximal activity on RGS14. We therefore propose that RGS14 combines the inhibition of G(i) activation or coupling to receptors via its GoLoco domain with stimulation of the GTPase activity of Ga(i)-GTP via its RGS domain to negatively regulate signalling downstream of G(i).
Full Text
The Full Text of this article is available as a PDF (190.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bernard M. L., Peterson Y. K., Chung P., Jourdan J., Lanier S. M. Selective interaction of AGS3 with G-proteins and the influence of AGS3 on the activation state of G-proteins. J Biol Chem. 2001 Jan 12;276(2):1585–1593. doi: 10.1074/jbc.M005291200. [DOI] [PubMed] [Google Scholar]
- Block C., Janknecht R., Herrmann C., Nassar N., Wittinghofer A. Quantitative structure-activity analysis correlating Ras/Raf interaction in vitro to Raf activation in vivo. Nat Struct Biol. 1996 Mar;3(3):244–251. doi: 10.1038/nsb0396-244. [DOI] [PubMed] [Google Scholar]
- Bourne H. R. How receptors talk to trimeric G proteins. Curr Opin Cell Biol. 1997 Apr;9(2):134–142. doi: 10.1016/s0955-0674(97)80054-3. [DOI] [PubMed] [Google Scholar]
- Béranger F., Goud B., Tavitian A., de Gunzburg J. Association of the Ras-antagonistic Rap1/Krev-1 proteins with the Golgi complex. Proc Natl Acad Sci U S A. 1991 Mar 1;88(5):1606–1610. doi: 10.1073/pnas.88.5.1606. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cho H., Kozasa T., Takekoshi K., De Gunzburg J., Kehrl J. H. RGS14, a GTPase-activating protein for Gialpha, attenuates Gialpha- and G13alpha-mediated signaling pathways. Mol Pharmacol. 2000 Sep;58(3):569–576. doi: 10.1124/mol.58.3.569. [DOI] [PubMed] [Google Scholar]
- Crespo P., Xu N., Simonds W. F., Gutkind J. S. Ras-dependent activation of MAP kinase pathway mediated by G-protein beta gamma subunits. Nature. 1994 Jun 2;369(6479):418–420. doi: 10.1038/369418a0. [DOI] [PubMed] [Google Scholar]
- De Vries L., Fischer T., Tronchère H., Brothers G. M., Strockbine B., Siderovski D. P., Farquhar M. G. Activator of G protein signaling 3 is a guanine dissociation inhibitor for Galpha i subunits. Proc Natl Acad Sci U S A. 2000 Dec 19;97(26):14364–14369. doi: 10.1073/pnas.97.26.14364. [DOI] [PMC free article] [PubMed] [Google Scholar]
- De Vries L., Gist Farquhar M. RGS proteins: more than just GAPs for heterotrimeric G proteins. Trends Cell Biol. 1999 Apr;9(4):138–144. doi: 10.1016/s0962-8924(99)01515-9. [DOI] [PubMed] [Google Scholar]
- Ford C. E., Skiba N. P., Bae H., Daaka Y., Reuveny E., Shekter L. R., Rosal R., Weng G., Yang C. S., Iyengar R. Molecular basis for interactions of G protein betagamma subunits with effectors. Science. 1998 May 22;280(5367):1271–1274. doi: 10.1126/science.280.5367.1271. [DOI] [PubMed] [Google Scholar]
- Franke B., Akkerman J. W., Bos J. L. Rapid Ca2+-mediated activation of Rap1 in human platelets. EMBO J. 1997 Jan 15;16(2):252–259. doi: 10.1093/emboj/16.2.252. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ghosh Mousumi, Peterson Yuri K., Lanier Stephen M., Smrcka Alan V. Receptor- and nucleotide exchange-independent mechanisms for promoting G protein subunit dissociation. J Biol Chem. 2003 Jul 24;278(37):34747–34750. doi: 10.1074/jbc.C300271200. [DOI] [PubMed] [Google Scholar]
- Hamm H. E. The many faces of G protein signaling. J Biol Chem. 1998 Jan 9;273(2):669–672. doi: 10.1074/jbc.273.2.669. [DOI] [PubMed] [Google Scholar]
- Hollinger S., Taylor J. B., Goldman E. H., Hepler J. R. RGS14 is a bifunctional regulator of Galphai/o activity that exists in multiple populations in brain. J Neurochem. 2001 Dec;79(5):941–949. doi: 10.1046/j.1471-4159.2001.00629.x. [DOI] [PubMed] [Google Scholar]
- Kimple R. J., De Vries L., Tronchère H., Behe C. I., Morris R. A., Gist Farquhar M., Siderovski D. P. RGS12 and RGS14 GoLoco motifs are G alpha(i) interaction sites with guanine nucleotide dissociation inhibitor Activity. J Biol Chem. 2001 May 31;276(31):29275–29281. doi: 10.1074/jbc.M103208200. [DOI] [PubMed] [Google Scholar]
- Kimple Randall J., Kimple Michelle E., Betts Laurie, Sondek John, Siderovski David P. Structural determinants for GoLoco-induced inhibition of nucleotide release by Galpha subunits. Nature. 2002 Apr 25;416(6883):878–881. doi: 10.1038/416878a. [DOI] [PubMed] [Google Scholar]
- Koch W. J., Hawes B. E., Allen L. F., Lefkowitz R. J. Direct evidence that Gi-coupled receptor stimulation of mitogen-activated protein kinase is mediated by G beta gamma activation of p21ras. Proc Natl Acad Sci U S A. 1994 Dec 20;91(26):12706–12710. doi: 10.1073/pnas.91.26.12706. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li Y., Sternweis P. M., Charnecki S., Smith T. F., Gilman A. G., Neer E. J., Kozasa T. Sites for Galpha binding on the G protein beta subunit overlap with sites for regulation of phospholipase Cbeta and adenylyl cyclase. J Biol Chem. 1998 Jun 26;273(26):16265–16272. doi: 10.1074/jbc.273.26.16265. [DOI] [PubMed] [Google Scholar]
- Nancy V., Wolthuis R. M., de Tand M. F., Janoueix-Lerosey I., Bos J. L., de Gunzburg J. Identification and characterization of potential effector molecules of the Ras-related GTPase Rap2. J Biol Chem. 1999 Mar 26;274(13):8737–8745. doi: 10.1074/jbc.274.13.8737. [DOI] [PubMed] [Google Scholar]
- Nassar N., Horn G., Herrmann C., Block C., Janknecht R., Wittinghofer A. Ras/Rap effector specificity determined by charge reversal. Nat Struct Biol. 1996 Aug;3(8):723–729. doi: 10.1038/nsb0896-723. [DOI] [PubMed] [Google Scholar]
- Natochin M., Gasimov K. G., Artemyev N. O. Inhibition of GDP/GTP exchange on G alpha subunits by proteins containing G-protein regulatory motifs. Biochemistry. 2001 May 1;40(17):5322–5328. doi: 10.1021/bi015505w. [DOI] [PubMed] [Google Scholar]
- Natochin M., Lester B., Peterson Y. K., Bernard M. L., Lanier S. M., Artemyev N. O. AGS3 inhibits GDP dissociation from galpha subunits of the Gi family and rhodopsin-dependent activation of transducin. J Biol Chem. 2000 Dec 29;275(52):40981–40985. doi: 10.1074/jbc.M006478200. [DOI] [PubMed] [Google Scholar]
- Natochin Michael, Gasimov Karim G., Artemyev Nikolai O. A GPR-protein interaction surface of Gi(alpha): implications for the mechanism of GDP-release inhibition. Biochemistry. 2002 Jan 8;41(1):258–265. doi: 10.1021/bi015708k. [DOI] [PubMed] [Google Scholar]
- Ohba Y., Mochizuki N., Matsuo K., Yamashita S., Nakaya M., Hashimoto Y., Hamaguchi M., Kurata T., Nagashima K., Matsuda M. Rap2 as a slowly responding molecular switch in the Rap1 signaling cascade. Mol Cell Biol. 2000 Aug;20(16):6074–6083. doi: 10.1128/mcb.20.16.6074-6083.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pals-Rylaarsdam R., Xu Y., Witt-Enderby P., Benovic J. L., Hosey M. M. Desensitization and internalization of the m2 muscarinic acetylcholine receptor are directed by independent mechanisms. J Biol Chem. 1995 Dec 1;270(48):29004–29011. doi: 10.1074/jbc.270.48.29004. [DOI] [PubMed] [Google Scholar]
- Peterson Y. K., Bernard M. L., Ma H., Hazard S., 3rd, Graber S. G., Lanier S. M. Stabilization of the GDP-bound conformation of Gialpha by a peptide derived from the G-protein regulatory motif of AGS3. J Biol Chem. 2000 Oct 27;275(43):33193–33196. doi: 10.1074/jbc.C000509200. [DOI] [PubMed] [Google Scholar]
- Rondard P., Iiri T., Srinivasan S., Meng E., Fujita T., Bourne H. R. Mutant G protein alpha subunit activated by Gbeta gamma: a model for receptor activation? Proc Natl Acad Sci U S A. 2001 May 8;98(11):6150–6155. doi: 10.1073/pnas.101136198. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Siderovski D. P., Diversé-Pierluissi M. a., De Vries L. The GoLoco motif: a Galphai/o binding motif and potential guanine-nucleotide exchange factor. Trends Biochem Sci. 1999 Sep;24(9):340–341. doi: 10.1016/s0968-0004(99)01441-3. [DOI] [PubMed] [Google Scholar]
- Snow B. E., Antonio L., Suggs S., Gutstein H. B., Siderovski D. P. Molecular cloning and expression analysis of rat Rgs12 and Rgs14. Biochem Biophys Res Commun. 1997 Apr 28;233(3):770–777. doi: 10.1006/bbrc.1997.6537. [DOI] [PubMed] [Google Scholar]
- Tesmer J. J., Berman D. M., Gilman A. G., Sprang S. R. Structure of RGS4 bound to AlF4--activated G(i alpha1): stabilization of the transition state for GTP hydrolysis. Cell. 1997 Apr 18;89(2):251–261. doi: 10.1016/s0092-8674(00)80204-4. [DOI] [PubMed] [Google Scholar]
- Traver S., Bidot C., Spassky N., Baltauss T., De Tand M. F., Thomas J. L., Zalc B., Janoueix-Lerosey I., Gunzburg J. D. RGS14 is a novel Rap effector that preferentially regulates the GTPase activity of galphao. Biochem J. 2000 Aug 15;350(Pt 1):19–29. [PMC free article] [PubMed] [Google Scholar]